
Topological states of matter in frustrated
quantum magnetism

Dissertation
eingereicht von

Alexander Wietek, M.Sc. M.Sc.

zur Erlangung des akademischen Grades
“Doctor of Philosophy (Ph.D.)”

Leopold-Franzens-Universität Innsbruck
Fakultät für Mathematik, Informatik und Physik

Betreut von: Univ.-Prof. Dr. Andreas M. Läuchli
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Abstract / Zusammenfassung

Frustrated quantum magnets may exhibit fascinating collective phenomena. The main goal
of this dissertation is to provide conclusive evidence for the emergence of novel phases of
matter like quantum spin liquids in local quantum spin models. After a general introduc-
tion to frustrated magnetism, spin liquids and the numerical methods employed in part I
comprising chapters 1 and 2 we present the main results of the thesis in part II.

We develop novel algorithms for large-scale Exact Diagonalization computations in chap-
ter 3. So-called sublattice coding methods for efficient use of lattice symmetries in the pro-
cedure of diagonalizing the Hamiltonian matrix are proposed. Furthermore, we suggest a
randomized distributed memory parallelization strategy. Benchmarks of computations on
various supercomputers with system size up to 50 spin-1/2 particles have been performed.

Results concerning the emergence of a chiral spin liquid in a frustrated kagome Heisen-
berg antiferromagnet are presented in chapter 4. We confirm previous findings obtained
via DMRG calculations using Exact Diagonalization and propose that the chiral spin liq-
uid phase in this model is well described by Gutzwiller-projected wave functions. Also,
the stability and extent of this phase are discussed.

In an extended Heisenberg model on the triangular lattice, we establish another chiral
spin liquid phase in chapter 5 amongst several magnetically ordered phases. We discuss
the special case of the Heisenberg J1-J2 model with nearest and next-nearest neighbor
interactions and present a scenario where the critical point of phase transition from the
120◦ Néel to a putative Z2 spin liquid is described by a Dirac spin liquid.

A generalization of the SU(2) Heisenberg model with SU(N) degrees of freedom on the
triangular lattice with an additional ring-exchange term is discussed in chapter 6. We
present our contribution to the project and the final results that suggest a series of chiral
spin liquid phases in an extended parameter range for N = 3, . . . , 10.

Finally, we present preliminary data from a Quantum Monte Carlo study of an SU(N)
version of the J-Q model on a square lattice in chapter 7. We study this model for N =
2, . . . , 10 and multi-column representations of SU(N) and establish the phase boundary
between the Néel ordered phase and the disordered phases for J, Q ≥ 0. The disordered
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phase in the four-column representation is expected to be a two-dimensional analog of the
Haldane phase for the spin-1 Heisenberg chain.

Deutsche Zusammenfassung

Frustrierte Quantenmagnete können faszinierende kollektive Phänomene aufweisen. Das
Ziel dieser Dissertation ist es schlüssigen Nachweis für die Emergenz neuer Materiezustände
wie Quantenspinflüssigkeiten in lokalen Quantenspinmodellen zu erbringen. Nach einer
allgemeinen Einleitung in frustrierten Magnetismus, Spinflüssigkeiten und die verwendeten
numerischen Methoden in Teil I, bestehend aus Kapitel 1 und 2 stellen wir die wichtigsten
Ergebnisse dieser Arbeit in Teil II vor.

Wir entwickeln neue Algorithmen für skalierbare Exakte Diagonalisierung in Kapitel 3.
So genannte Untergitterkodierungsmethoden zur effizienten Nutzung von Gittersymmetrien
im Vorgang der Diagonalisierung der Hamiltonmatrix werden vorgeschlagen. Desweiteren
stellen wir eine randomisierte Parellelisierungsstrategie für verteilte Speichersysteme vor.
Benchmarks mit Systemgrößen bis zu 50 Spin-1/2 Teilchen wurden auf mehreren Super-
computern durchgeführt.

Ergebnisse zur Emergenz von chiralen Spinflüssigkeiten in einem erweiterten Heisen-
berg Antiferromagneten auf dem Kagome-Gitter werden in Kapitel 4 vorgestellt. Wir
bestätigen vorangegangene DMRG Studien mithilfe der Exakten Diagonalisierung und
zeigen auf, dass diese chirale Spinflüssigkeit gut mithilfe Gutzwiller-projizierter Wellen-
funktionen beschrieben werden kann. Desweiteren werden die Stabilität und die Aus-
dehnung dieser Phase behandelt.

In einem erweiterten Heisenbergmodell auf dem Dreiecksgitter bringen wir den Nachweis
einer weiteren chiralen Spinflüssigkeitsphase zwischen mehreren magnetisch geordneten
Phasen in Kapitel 5. Wir besprechen den Spezialfall des Heisenberg J1-J2 Modells mit
nächster- und übernächster-Nachbar Wechselwirkung und stellen ein Szenario vor, bei
welchem der kritische Punkt des Phasenübergangs zwischen der 120◦ Néel geordneten und
der mutmaßlichen Z2 Spinflüssigkeit durch eine Dirac Spinflüssigkeit beschrieben wird.

Eine Verallgemeinerung des SU(2) Heisenberg Modells mit SU(N) Freiheitsgraden auf
dem Dreiecksgitter mit zusätzlichem Ringaustauschterm wird in Kapitel 6 diskutiert.
Wir stellen unseren Beitrag zum Projekt und die endgültigen Ergebnisse vor, welche
eine Reihe von chiralen Spinflüssigkeitsphasen in einer ausgedehnten Parameterregion für
N = 3, . . . , 10.

Zuletzt stellen wir vorläufige Daten einer Quanten Monte Carlo Studie zu einer SU(N)
Version des J-Q Modells auf dem Quadratgitter vor. Wir untersuchen dieses Modell
für N = 2, . . . , 10 und Darstellungen mit mehreren Spalten von SU(N) und stellen den
Phasenübergangspunkt von der Néel geordneten zur ungeordeten Phase für J, Q ≥ 0
fest. Es wird erwartet, dass die ungeordnete Phase in der vier-Spalten Darstellung ein
zweidimensionales Analogon zur Haldane Phase der Spin-1 Heisenberg Kette ist.
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1
Introduction

A beginning is the time for taking the most
delicate care that the balances are correct.

Frank Herbert, Dune

Microscopic particles like electrons, neutrons, and protons build up the matter that sur-
rounds us in everyday life. While the fundamental physical laws that describe the interac-
tion between electrons and the atomic nuclei are as of today well understood, predicting
the behavior of many particles interacting with each other remains a great challenge. The
behavior of a macroscopic amount of non-interacting particles can be deduced from aver-
aging over the behavior of single particles. Often, also weakly interacting particles behave
as if they are essentially non-interacting. Strong interactions, on the other hand, may lead
to exciting collective phenomena. Understanding the emergence of macroscopic behavior
from strongly interacting microscopic constituents is a challenging, yet fascinating, task.

The ratio between kinetic and interaction energy of microscopic particles is set by tem-
perature. Low temperatures decrease the kinetic energy of particles, thus making interac-
tion effects more pronounced, as can prominently be observed in ferromagnetic materials.
While the spin degrees of freedom strongly fluctuate at high temperatures, they collectively
align in the same direction once cooled down below the Curie temperature. In particular,
the tendency to align in the same direction is due to the exchange interaction of the spin
degrees of freedom. This order-to-disorder transition in ferromagnets can be explained
by Landau’s theory of symmetry breaking. The disordered state is symmetric under spin
rotations, while the ordered state chooses a preferred direction and the symmetry is not
respected by the state of the system. The principle of symmetry breaking explains most
known phase transitions and is a major cornerstone in the theory of condensed matter
physics.

However, there are phases of matter whose theoretical description is beyond Landau’s
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1. Introduction

(a) (b)

Figure 1.1.: The Fractional Quantum Hall effect. a) Sketch of the experimental setup for
measuring Hall effects, Bz denotes the magnetic field, Ix the applied current
and Vy the measured Hall voltage b) Measurements of the low-temperature
Hall resistance RH(= Rxy) and the diagonal resistivity R from [3]. Plateaux
appear at fractional values of the filling fraction ν.

theory. The fractional quantum Hall effect, short FQHE, discovered experimentally by
Tsui, Stormer and Gossard in 1982 [1] is understood to exhibit a novel kind of ordering.
The FQHE is a variant of the Hall effect, where electrons are confined to two dimen-
sions at low temperatures and high magnetic fields, as can be realized in GaAs-AlGaAs
heterojunctions [1, 2]. The Hall resistance is defined by

Rxy = Vy
Ix
, (1.0.1)

where Vy is the Hall voltage and Ix the applied current. It exhibits plateaux at certain
quantized values

Rxy = 1
ν

2π~
e2 , (1.0.2)

which depends on fundamental physical constants as the elementary charge e and Plank’s
constant ~ , cf. Fig. 1.1. ν is called the filling fraction and sets the plateau of the Hall
resistance. Integer filling fractions ν = 1, 2, 3, . . . constitute the integer quantum Hall
effect and fractional filling fractions ν = 1

3 ,
1
5 ,

2
3 , . . . constitute the fractional quantum

Hall effect, respectively. Phase transitions between different filling fractions are observed
when tuning the applied magnetic field. The electrons are strongly interacting via the
Coulomb force and form collective many-body quantum states with intriguing properties in
FQHE plateaux. Firstly, different FQHE plateaux share the same symmetry properties. A
phase transition between these plateaux cannot be explained by Landau’s theory of phase
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transitions, instead, the novel concept of topological order was introduced [4]. Different
phases in the FQHE are understood to have different topological orders which cannot be
adiabatically connected without observing a phase transition.

Topologically ordered phases exhibit a wide variety of exciting phenomena. One of
which is the fractionalization of quasiparticles. Elementary excitations of FQHE states
may have a charge which is a fraction of the elementary charge of an electron. Thus, while
the microscopic constituents are electrons with exactly one elementary charge, emergent
quasiparticles may have, e.g. 1/3 of the elementary charge. This charge fractionalization
has already been observed in experiments [5]. Another theoretically predicted property
of the quasiparticles is non-trivial statistical behavior. If two bosons or fermions are in-
terchanged their many-body wave function attains a phase of 0 or π respectively due to
(anti-)symmetry. Emergent quasiparticles of topologically ordered phases in two dimen-
sions may exhibit a different behavior. The phase for interchanging may be different from
0 or π. In this case, the quasiparticles are called anyons. More generally, the process of
interchanging or braiding topological quasiparticles may act nontrivially on the space of
degenerate states with a given number of quasiparticles in which case the quasiparticles
are called non-Abelian anyons.

The discovery of novel phases of matter has in the past often given rise to new tech-
nologies. The impact of, for example, semiconductors or liquid crystal devices is hard to
overestimate. Since topological order is a completely new paradigm of phases of matter,
naturally the question arises what technologies such states can be used for. Although
technological breakthroughs are hard to predict, it has been suggested that topological
states of matter can be used to implement fault-tolerant quantum computation or quan-
tum memory devices [6]. Many approaches to quantum computation, like trapped ions [7,
8] suffer the problem that small local disturbances to the physical system cause decoher-
ence since information is stored locally in those systems. The approaches to topological
quantum computation circumvent this problem by encoding the information globally over
the entire system. Changing the state of the system with local perturbations is expo-
nentially suppressed in the system size, thus information can be stored robustly. The
implementation of quantum gates for performing computations can be achieved by using
the statistical properties of non-Abelian anyons.

Apart from the FQHE also different physical systems are expected to exhibit phase
transitions that are beyond Landau’s theory. In the context of high-temperature super-
conductivity of cuprates [9] like La2CuO4 it was found that the system can approximately
be described by the Hubbard model [10]

H = −t
∑
〈i,j〉
α=↑,↓

(c†iαcjα + H.c.) + U
∑
i

ni,↑ni,↓, (1.0.3)

where c†iα, ciα are electron creation and annihilation operators, ni,α = c†i,αci,α, 〈i, j〉 denotes
the sum over nearest neighbour pairs and t and U are the hopping and on-site repulsion
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1. Introduction

strength. Compounds like La2CuO4 are expected to be close to half-filling, i.e. the number
of up or down spin fermions is exactly half the number of lattice sites. In the strong
coupling, or Mott-insulating limit t � U the effective low energy model is given by a
quantum Heisenberg model of the form

H = J
∑
〈i,j〉

Si · Sj , (1.0.4)

The coupling constant is given by J = t2/U and Si = (Sxi , S
y
i , S

z
i )T denotes spin oper-

ators at position i. Anderson proposed in 1987 that the ground state of the Heisenberg
model Eq. (1.0.4) could be a so-called resonating valence bond, short RVB state under
certain circumstances which would yield an explanation for high temperature supercon-
ductivity [11]. The RVB state is an example of a so-called quantum spin liquid state which
is, apart from the FQHE states, another class of states that may exhibit topological order.
We will discuss these states in more detail in section 1.2.

The Heisenberg model Eq. (1.0.4) and extensions thereof have been studied in a plethora
of situations. The physics of the system Eq. (1.0.4) depends strongly on the sign of
the coupling constant J . For J < 0 the model is called ferromagnetic and it becomes
energetically favorable for neighboring spins to align in the same direction. Similarly, the
model is called antiferromagnetic for J > 0 and neighboring spins are energetically favored
to align in the opposite direction.

A famous exact analytical solution by Hans Bethe [12] is known for the case of local
spin-1/2 on a chain lattice. In most cases, an analytical solution is not known. Until today
an analytical solution of the two-dimensional quantum spin-1/2 Heisenberg antiferromag-
net on a square lattice has not been found. Yet, analytical approximations like linear
spin-wave theory [13] or numerical techniques like Exact Diagonalization[14] or Quantum
Monte Carlo [15] have by now firmly established that the ground state of this system is
magnetically ordered. We will discuss magnetic ordering in more detail in section 1.1.1.

In many situations, magnetic materials which are described by models like Eq. (1.0.4) are
disordered at high temperatures and ordered at low temperatures. This need not necessar-
ily be the case, as certain mechanisms may prevent a system to develop magnetic order at
low temperatures or even in the ground state. Famous materials not ordering at even low-
est experimental accessible temperatures include Herbertsmithite ZnCu3(OH)6Cl2 [16] or
organic Mott insulators like EtMe3Sb[Pd(dmit)2]2 [17, 18] or κ (BEDT TTF)2Cu2(CN)3
[19, 20]. The main ingredients preventing magnetic ordering are a low spin quantum num-
ber of the magnetic ions, reduced dimension of the effective interactions at low tempera-
tures, and geometrical frustration. We will describe the effect of these mechanisms in detail
in section 1.1.2. The material Herbertsmithite Fig. 1.2, for example, fulfills these criteria
very well: the local magnetic Cu2+ ions with spin-1/2 are aligned in two-dimensional layers
which form a highly frustrated kagome geometry. Indeed neutron scattering experiments
show absence of magnetic ordering at lowest experimentally attainable temperatures [16].
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(a) (b)

Figure 1.2.: Herbertsmithite ZnCu3(OH)6Cl2. a) schematic crystal structure. Reprinted
with permission from [21]. Copyright 2017 American Chemical Society. Blue,
green, bright green, red, and gray spheres represent Zn, Cu, Cl, O, and
H atoms, respectively [21]. The magnetic Cu2+ ions form two-dimensional
kagome planes which are weakly coupled amongst each other. b) Naturally
ocurring Herbertsmithite (blue crystal) in a rock compund (from Wikimedia
Commons, photograph by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0)

The nature of disordered states in low-dimensional frustrated quantum magnets is a
highly interesting topic. In many cases, these disordered states are expected to differ
drastically from trivial paramagnetic phases with a low degree of quantum entanglement.
Indeed, some of these states may exhibit topological order similar to the FQHE. Such
states are called Quantum Spin Liquids. Many of them have been proposed as the ground
state of frustrated quantum antiferromagnets. Prominently, Anderson’s RVB liquid has
been proposed as the ground state of the triangular lattice spin 1/2 Heisenberg antifer-
romagnet [22]. Similarly, so-called chiral spin liquids have been envisioned as the ground
state for certain frustrated models [23]. Chiral spin liquids are a direct analog of FQHE
wave functions for spin systems [24]. Whereas, the ground state of the triangular lattice
spin-1/2 Heisenberg antiferromagnet is by now understood to be magnetically ordered [25],
the nature ground state of the model on the kagome lattice is still highly debated and
suggested to be a quantum spin liquid [26–40]. We will discuss quantum spin liquids in
detail in section 1.2.

There are several exactly solvable models which can be proven to stabilize a quan-
tum spin liquid ground state, famously Kitaev’s Toric Code [41], Kitaev’s honeycomb
model [42], or quantum dimer models [31, 43]. Also recently exact parent Hamiltonians
for chiral spin liquids have been found [44–46]. The interactions between the particles in
those models are nevertheless often not realistic to be realized in an experimental setup.
It is thus an important question whether simpler models might give rise to the emergence
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1. Introduction

of quantum spin liquids.
In absence of exact analytical solutions, one has to employ other methods for studying

quantum spin systems. Frustrated quantum magnets are strongly correlated phases of mat-
ter where the interactions between particles dominate the physics of the system. Therefore,
many standard analytical techniques like perturbation theory from a non-interacting limit
or mean-field approaches often fail to predict the correct behavior. Numerical methods,
on the other hand, have proven as valuable tools to gain insight to strongly correlated
electron systems. Amongst the most prominent numerical methods for studying quan-
tum spin systems are Exact Diagonalization, Quantum Monte Carlo, Variational Monte
Carlo [47], density matrix renormalization group, short DMRG [48], or tensor network
algorithms [49]. Each of the methods comes with its advantages and disadvantages and
some are particularly suited for certain problems. In the course of this thesis the Ex-
act Diagonalization, Variational Monte Carlo and Quantum Monte Carlo methods have
been developed and applied. We give a short description of these methods in section 2.1,
section 2.2.
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1.1. Frustrated Magnetism

1.1. Frustrated Magnetism

That’s what the world is, after all:
an endless battle of contrasting memories.

Haruki Murakami, 1Q84

Frustrated quantum magnets are currently studied intensely by both experimentalists
and theoreticians. On the experimental side, many materials are studied for their intrigu-
ing properties. A detailed survey of those and the experimental methods for investigating
their physical properties can be found in Ref. [50]. Here we give a short introduction to
the theoretical aspects. We describe how the principle of spontaneous symmetry break-
ing manifests itself in quantum magnets as magnetic order in section 1.1.1. Interesting
phenomena such as the emergence of quantum spin liquids may occur when the system
is disordered even at lowest temperatures. There are several mechanisms preventing the
system from ordering when cooled down which we explain in section 1.1.2. Often, these
mechanisms lead to a massive degeneracy of ground states. The order-by-disorder princi-
ple discussed in section 1.1.3 may favor certain submanifold of these states due to thermal
or quantum fluctuations and therefore give rise to unexpected emergent states of matter.

1.1.1. Magnetic order

Patterns of magnetic ordering are energetically favorable in many spin systems. Consider
the ferromagnetic Ising model

HIsing = J
∑
〈i,j〉

σi · σj + h
∑
i

σi, (1.1.1)

where σi = ±1 are classical Ising spins with J < 0 and h denotes an external magnetic
field. For h = 0 the ferromagnetic states |↑ · · · ↑〉 and |↓ · · · ↓〉 with all spins aligned
in the same direction are the ground states. The system in the ground state at h = 0
is magnetically ordered. Thermal fluctuations favor entropy and the system becomes a
disordered paramagnetic state at high temperatures.

Magnetic order is an instance of spontaneous symmetry breaking. The Ising model
Eq. (1.1.1) at h = 0 is invariant under global spin flips, σi → −σi, thus possesses a
discrete Z2 symmetry. In two or more dimensions the model exhibits an order-to-disorder
transition at finite temperature [51]. In the ordered phase this symmetry is not respected
by the equilibrium ground states and the magnetization order parameter

〈m〉 = 1
N

∑
j

〈σj〉, (1.1.2)

attains a finite value in the thermodynamic limit in the sense that

lim
h→0

lim
N→∞

〈m〉 6= 0. (1.1.3)
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1. Introduction

Here, 〈. . .〉 denotes a classical ensemble average and N the number of lattice sites. The
degeneracy of the ground state is twofold, thus discrete in the thermodynamic limit.

Another fundamental model describing magnetic materials is the quantum Heisenberg
model

H =
∑
i,j

JijSi · Sj + h
∑
j

e−iQ·rjSzj + H.c., (1.1.4)

where Si = (Sxi , S
y
i , S

z
i )T are quantum mechanical SU(2) spin operators and Jij are cou-

pling constants. rj denotes the position of the i-th spin and Q defines an ordering vector.
The Heisenberg model Eq. (1.1.14) is invariant under continuous global SU(2) spin rota-
tions for vanishing external field h = 0, i.e.[

H,
∑
i

Sαi

]
= 0 at h = 0, (1.1.5)

for α = x, y, z. The ordered magnetization with ordering vector Q is defined by

〈mQ〉 = 1
N

∑
j

e−iQ·rj 〈Szj 〉, (1.1.6)

where 〈. . .〉 = 1
Z Tr(e−βH . . .) denotes the quantum statistical average at inverse temper-

ature β and partition function Z = Tr(e−βH). The ordered magnetization 〈mQ〉 is not
invariant under the SU(2) symmetry group of spin rotations and can, therefore, be used
as an order parameter to detect spontaneous symmetry breaking,

lim
h→0

lim
N→∞

〈mQ〉 6= 0. (1.1.7)

The phenomenology of spontaneous symmetry breaking of a continuous symmetry is more
diverse than in the discrete case. In the thermodynamic limit, the ground state becomes
infinitely degenerate due to the continuous nature of the symmetry group [52, 53].

There are certain characteristic phenomena when approaching the thermodynamic limit
in systems breaking a continuous symmetry. Ferromagnetic Heisenberg models with Jij <
0 for all i and j always admit the fully polarized ground state

|ferro〉 = |↑↑ . . . ↑〉 , (1.1.8)

with all spins aligned in one direction. Yet, the ground state is at least (2SN + 1) degen-
erate where S denotes the local value of the spin. This is because the multiplet with total
spin SN(SN + 1) can be generated by rotating the fully polarized state in Eq. (1.1.8).

The situation is quite different for antiferromagnetic models Jij > 0. The simple analog
of the fully polarized state in Eq. (1.1.8) would be the classical Néel state [54]

|Néel〉 = |↑↓↑↓ . . .〉 . (1.1.9)

10



1.1. Frustrated Magnetism

Even for an antiferromagnetic Ising model this state is only the ground state if the lattice
is bipartite and antiferromagnetic interactions only connect sites between the two disjoint
sublattices. This is not the case for frustrated geometries, cf. section 1.1.2. Moreover,
this state is not an eigenstate of the antiferromagnetic Heisenberg model. For a two-site
spin-1/2 Heisenberg interaction the eigenstates and eigenvalues are given by

S1 · S2 |S = 0,m = 0〉 = −3
4 |S = 0,m = 0〉 = −3

4(|↑↓〉 − |↓↑〉) (1.1.10)

S1 · S2


|S = 1,m = 1〉
|S = 1,m = 0〉
|S = 1,m = −1〉

= +1
4


|S = 1,m = 1〉
|S = 1,m = 0〉
|S = 1,m = −1〉

= +1
4


|↑↑〉
|↑↓〉+ |↓↑〉
|↓↓〉

(1.1.11)

The ground state with energy −3
4 is a rotationally invariant spin singlet. The fact that

the ground state has total spin zero is not only true for the two site interaction but for
generic bipartite antiferromagnetic Heisenberg models on a finite lattice. This is known
as Marshall’s theorem and has been mathematically proven in Refs. [55, 56]. This result
only holds for finite size geometries. In order to break the SU(2) symmetry, a set of higher
spin-S states approaches the ground state energy. This set of states is called the Anderson
tower of states and is characteristic for spontaneous breaking of a continuous symmetry.
The excitation energy of these states is proportional to S(S+1)/N , thus collapses linearly
to the ground state energy for N → ∞. A typical finite size spectrum obtained from
Exact Diagonalization of the Heisenberg spin-1/2 square lattice antiferromagnet on 32
lattice sites is shown in Fig. 1.3. Quantum numbers such as total spin, quasimomentum
and point group representations of the states occurring in the tower of states can actually
be predicted for a given magnetic order and give a strong evidence that a certain order is
realized by the system. The method of extracting these quantum numbers is explained in
appendix B and more detailed in Ref. [57].

Spontaneous symmetry breaking in the sense of Eq. (1.1.7) implies long-range order of
the spin correlation functions

lim
|ri−rj |→∞

〈Si · Sj〉 6= 0. (1.1.12)

For translationally invariant systems, the static magnetic structure factor

S(k) =
∑
j

eik·(rj−r0)〈Sj · S0〉, (1.1.13)

is the Fourier-transform of the spin correlation function. Long-range order implies the
divergence of the structure factor at an ordering wave vector Q.

Every pattern of magnetic ordering on regular lattice has one or several characteristic
ordering vectors Q. Ferromagnetic order is peaked at Q = Γ ≡ 0 whereas a square
lattice Néel antiferromagnetic order is peaked at Q = M ≡ (π, π). The ordering vector

11



1. Introduction

Figure 1.3.: Many-body energy spectrum of the 32 site spin-1/2 Heisenberg antiferromag-
net on a square lattice geometry. States are differentiated by their total spin
quantum number S(S + 1). The quasimomentum of the states in the Ander-
son tower is given by Γ and M with D4 point group representation A1. For
details on the representation theory and quantum numbers of space groups see
appendix A. The levels with the green background are the magnon (Goldstone
mode) levels and exhibit a linear dispersion relation.

Q does not uniquely define an ordering pattern. Thus, there can be multiple ordering
patterns with the same ordering vector. Ref. [58] gives a classification of possible patterns
of magnetic orderings and presents their prominent features, including the peaks of the
structure factor in reciprocal space. Fig. 1.4 shows the spin correlations of the 120◦ Néel
ordered ground state of the triangular lattice spin-1/2 Heisenberg antiferromagnet on a
36 site lattice and its corresponding static spin structure factor in reciprocal space.

A hallmark feature in systems breaking a continuous symmetry is the occurrence of
gapless low-energy modes. These modes are called Goldstone modes [59, 60] and are a
general phenomenon occurring in many branches of physics. For spin systems, they are
called magnons or spin waves. The Goldstone theorem states that these gapless modes
necessarily need to exist once a continuous symmetry is spontaneously broken. We state
the theorem in the form presented in Ref. [61] where also an elementary proof is given.

12



1.1. Frustrated Magnetism

K

M

(a) (b)

Figure 1.4.: Spin correlations 〈Si · S0〉 (a) and structure factor S(k) (b) for the ground
state of the antiferromagnetic spin-1/2 Heisenberg nearest neighbour model
on a 36 site triangular lattice. The black cross in (a) marks the spin S0. The
ground state is 120◦ Néel ordered [25] and shows a peak in the structure factor
at the K point in the Brillouin zone.

Theorem (Goldstone’s theorem). Consider the generic Heisenberg Hamiltonian

H =
∑
ij

JijSi · Sj , (1.1.14)

satisfying the following locality condition

1
N
|Jij ||ri − rj | <∞. (1.1.15)

If the spin structure factor Eq. (1.1.13) diverges at some finite wave vector Q

lim
k→Q

S(k)→∞, (1.1.16)

then there exists an eigenstate with momentum k, whose energy E(k) vanishes at Q

lim
k→Q

E(k) = 0. (1.1.17)

The magnon modes can already be detected in finite size spectra, cf. Fig. 1.3. Their
behavior can be approximated by linear spin wave theory (see e.g. Refs. [52, 62, 63]) and
allow for the prediction of many physical properties of magnetically ordered states.
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1.1.2. Mechanisms of Disorder

The equilibrium behavior of a physical system in statistical mechanics system is determined
by its free energy functional

F = E − TS, (1.1.18)

where E is the internal energy, T the temperature and S the entropy of the system. In
equilibrium, the state minimizing the free energy is realized. At higher temperatures,
states with higher entropy are favored, at lower temperatures states with lower energy
are favored. Ordered states are often minimizing energy constraints and are consequently
often realized in a ground state. Temperature tends to introduce disorder to the system.
In the infinite temperature limit, the equilibrium state becomes equidistributed in phase
space. For spin systems, this state is a featureless paramagnetic state.

Temperature is not the only physical mechanism that induces fluctuations in spin sys-
tems. There are several other mechanisms that increase the entropy of states even at low
or zero temperature. These mechanisms may give rise to the emergence of fascinating
new phenomena such as quantum spin liquids. We will now discuss the most important
disorder mechanisms for frustrated quantum spin systems.

Quantum fluctuations

Disorder can be introduced by going from classical spin models to quantum mechanical
spin models. Such a transition can be observed in the spin-1/2 anisotropic Heisenberg
model

H = Jz
∑
〈i,j〉

Szi S
z
j + Jxy

2
∑
〈i,j〉

S+
i S
−
j + S−i S

+
j . (1.1.19)

Consider a classical Néel state

|Néel〉 = |↑↓↑↓ . . .〉 . (1.1.20)

In the classical Ising limit Jxy = 0 on a bipartite lattice this state is the ground state of
Eq. (1.1.19) for Jz > 0. When turning on the quantum mechanical exchange interaction
for Jxy > 0 this state is not an eigenstate anymore, since the exchange term introduces
spin flips like

(S+
i S
−
j + S−i S

+
j ) |. . . ↑i . . . ↓j . . .〉 = |. . . ↓i . . . ↑j . . .〉 . (1.1.21)

The true ground state in Eq. (1.1.19) must, therefore, be a superposition of multiple spin
configurations with locally fluctuating spins.

This effect is most pronounced in the S = 1/2 case. An exchange term turns a fully
polarized state |↑↓〉 to the oppositely polarized state |↓↑〉. For higher spin, the effect of the
exchange term is less pronounced since applying the off-diagonal term to a fully polarized
state

(S+
i S
−
j + S−i S

+
j ) |. . . (S)i . . . (−S)j . . .〉 ∝ |. . . (S − 1)i . . . (−S + 1)j . . .〉 , (1.1.22)
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1.1. Frustrated Magnetism

?
(a) (b) (c)

Figure 1.5.: Geometrically frustrated lattice geometries. The triangle (a) shows the basic
dilemma leading to frustration in antiferromagnetic models. Local interactions
cannot be simultaneously be minimized. The kagome (b) and the pyrochlore
(c) lattice both give rise to high degrees of frustration.

does not fully invert the local polarization. Processes reverting the local polarization only
occur at 2S-th order in perturbation theory. Hence, higher spin S yields less fluctuations
in the local spin polarization. Indeed, the large-S limit of the quantum Heisenberg model
can be proven to correspond to the classical Heisenberg model in a mathematically rigorous
way [64].

For the square anisotropic spin-1/2 Heisenberg model in the classical Ising limit Jxy = 0
we know that the model exhibits long-range order at low but finite temperatures due to
Onsager’s solution [51]. Yet, in the isotropic Heisenberg case, the system is disordered
at any finite temperature [65]. So perturbing a classical system with terms introducing
quantum fluctuations may result in an order-to-disorder transition. In one dimension
the Ising model at exactly T = 0 is long-range ordered whereas the Heisenberg case
exhibits algebraically decaying correlation functions according to the exact Bethe ansatz
solution [12].

Geometric Frustration

As in real life, frustration occurs in physical systems if too many constraints cannot be
simultaneously satisfied. The most basic example in physics is the antiferromagnetic Ising
model

H = J
∑
〈i,j〉

σi · σj , J > 0, σi = ±1, (1.1.23)

on the triangular lattice. Fig. 1.5a illustrates the dilemma. Out of the 23 possible spin
configurations on a single triangle, six states are of energy −J and two are of energy 3J .
The ground state is thus sixfold degenerate. This is a typical effect if not all local energy
constraints can be simultaneously minimized. For spin systems, triangular geometries
may give rise to frustration. Besides the triangular lattice geometry, prominent lattice

15



1. Introduction

Figure 1.6.: A subset of ground states of the triangular lattice Ising antiferromagnet. The
direction of the spins in the middle of the hexagons can be freely chosen
without altering the energy of the state. Redrawn freely from [66].

geometries with a high degree of geometric frustration are the two-dimensional kagome and
the three-dimensional pyrochlore lattice shown in Fig. 1.5. The ground state degeneracy
can even become an extensive thermodynamic quantity. On an extended triangular lattice
consider a state where on a hexagonal sublattice all energy constraints are minimized as in
Fig. 1.6. Then the direction of each third spin in the middle of the hexagon can be freely
chosen. This gives rise to a degeneracy of D = 2N/3 states, where N is the number of sites.
A measure of the ground state degeneracy is given by the entropy at zero temperature
S0, the residual entropy. Since the states in Fig. 1.6 are a subset of all degenerate ground
states we have a simple estimation for the residual entropy of the triangular lattice Ising
antiferromagnet,

S0/N >
1
3 log 2 ≈ 0.231049. (1.1.24)

The ground state degeneracy thus becomes an extensive thermodynamic quantity. We
see that geometric frustration induces large fluctuations even at zero temperature. Similar
counting arguments have also been performed for Heisenberg models [67].

For the square lattice Ising model, an exact analytical solution was found by Onsager
[51]. Following his work, several other authors found solutions to Ising models on the
honeycomb, triangular and kagome lattice [68–71]. All unfrustrated cases, i.e. the (anti-
)ferromagnetic square and honeycomb geometry and the ferromagnetic triangular and
kagome geometries have been proven to exhibit an order-disorder transition at a finite
critical temperature Tc > 0. The frustrated cases, on the other hand, do not order even at
zero temperature. The residual entropies have been computed exactly. For the triangular
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1.1. Frustrated Magnetism

lattice [68] is given by

S0/N = 2
π

π/3∫
0

log(2 cos(ω))dω ≈ 0.3383, (1.1.25)

and for the kagome lattice [71] by

S0/N = 1
24π2

2π∫
0

2π∫
0

log [21− 4(cos(ω1) + cos(ω2) + cos(ω1 + ω2))] dω1dω2 ≈ 0.50183.

(1.1.26)
The kagome lattice may, therefore, be regarded as being more frustrated than the trian-
gular lattice geometry.

Dimensionality

Lower dimensionality may introduce additional fluctuations to a system. Systems ex-
hibiting a global continuous symmetry like SU(2) spin rotational symmetry in Heisenberg
models Eq. (1.1.14) become disordered at dimensions d ≤ 2. A nice heuristic scaling
argument for this has been given by John Cardy [72]. Consider an ordered state like a
ferromagnet with a domain of linear length l where the local magnetic moment is rotated
180◦ in the center with respect to the ferromagnetic state. Since we have continuous de-
grees of freedom we can perform this rotation gradually. The energy cost between two
neighboring spins is of the order O(l−2). In d dimensions, a domain of length l has O(ld)
local interactions. Thus the energy cost of such a domain is of the order O(ld−2). On
the other hand allowing for domain walls increases the entropy. For minimizing the free
energy,

F = E − TS, (1.1.27)

it is therefore favorable to have states with several domain walls which yield a higher
entropy in d ≤ 2, whereas such states become energetically unfavorable in d > 2.

This heuristic argument can be made very precise in the sense of a rigorous mathematical
proof for several systems. First works [65, 73, 74] showed the absence of long-range
order in bosonic superfluids, fermionic superconductors, and spin systems in d ≤ 2. For
Heisenberg spin systems with mild locality assumptions on the range of interactions, the
precise statement is given by the Mermin-Wagner theorem [65]. We state the theorem
from Ref. [61].

Theorem (Mermin-Wagner theorem). For the quantum Heisenberg model

H =
∑
i,j

JijSi · Sj − h
∑
j

e−iQ·rjSzj + H.c., (1.1.28)
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satisfying the locality condition Eq. (1.1.15) there can be no spontaneous symmetry breaking
in one dimension for T ≥ 0 or in two dimensions at finite temperature T > 0,

lim
h→0

lim
N→∞

〈mQ〉 = 0. (1.1.29)

The theorem has been generalized to various different systems. A review on these
generalizations is given by Ref. [75].

From a field theoretical perspective, spontaneous symmetry breaking of a continuous
symmetry implies the emergence of massless Goldstone bosons. It has been shown [76]
that in two space time dimensions the correlation functions of these fields are infrared
divergent and thus the theory is ill-defined. This can be seen as the generic underlying
principle that forbids the emergence of long-range order in lower dimensions.

The Mermin-Wagner theorem does not make statements about the two-dimensional case
at zero temperature and the three-dimensional case. The question about the behavior of
the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice at exactly
zero temperature thus remains unanswered by the Mermin-Wagner theorem. Several an-
alytical and numerical studies have investigated this question. A first numerical Exact
Diagonalization study [14] on lattices up to 18 sites indicated that the ground state is
indeed long-range ordered. This has been supported by spin-wave calculations [13] who
predicted the behavior of the spin correlation function

|〈Si · Sj〉| − (m̃)2 ∼ 1
|ri − rj |

, (1.1.30)

where m̃ ≡ 〈m(π,π)〉 is the staggered magnetization with wave vector Q = (π, π), cf.
Eq. (1.1.6). This was finally confirmed by statistically exact Quantum Monte Carlo sim-
ulations [15] which found a value of

m̃ = 0.30± 0.02. (1.1.31)

This corresponds to 60% of the staggered magnetization of the classical ground state. A
review of the physics of the two-dimensional spin 1/2 Heisenberg model is given by [77].
For spin S ≥ 1 a mathematical proof showed that at T = 0 long-range order is established
[78].

In three dimensions the spin-1/2 Heisenberg antiferromagnetic model on the cubic lattice
exhibits a finite temperature phase transition from an ordered to a disordered phase. This
has been demonstrated by a QMC study [79] finding a critical temperature

Tc/J = 0.946± 0.001. (1.1.32)

1.1.3. Order-by-Disorder principle

Quantum or thermal fluctuations usually introduce disorder to a system. Under special
circumstances, they can also have the opposite effect and order the system. Although
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1.1. Frustrated Magnetism

Figure 1.7.: Ground states of the classical triangular lattice antiferromagnetic Heisenberg
model with additional next-nearest neighbor interactions Eq. (1.1.33). For
1/8 < J2/J1 < 1 the tetrahedral and stripy states are degenerate.

several types of states may be degenerate ground states in the classical regime, the fluctu-
ations around different types can be unequal in behavior. Introducing thermal or quantum
fluctuations then selects the type of states whose fluctuations provide the largest entropy
or lowest zero-point energy. This somehow paradoxical effect is called order-by-disorder
mechanism.

A typical example of quantum fluctuations ordering a system can be found in the frus-
trated antiferromagnetic triangular lattice Heisenberg model with nearest and next-nearest
neighbor interactions [80]

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj . (1.1.33)

For 0 < J2/J1 < 1/8 the classical ground state is 120◦ Néel ordered whereas for 1/8 <
J2/J1 < 1 two types of states are degenerate: a collinear state where states are ordered
ferromagnetically in one direction of the triangular lattice and antiferromagnetically along
the other two directions and a tetrahedral state where four spins are aligned in a way that
they form a regular tetrahedron, cf. Fig. 1.7. Quantum fluctuations can now be taken into
account via spin-wave theory around the classically ordered states. The correction to the
ground state energy yields a lower energy for the stripy ordered state than the tetrahedral
state. By numerically evaluating ground state properties of the model one can show that
indeed stripy order is realized for J2/J1 & 0.18 [81, 82]. We will discuss an extended
version of this model in detail in chapter 5.

Several other examples of quantum and thermal fluctuations leading to the realization of
a subset of degenerate configurations have been discussed in the literature [67, 83–87]. The
order-by-disorder mechanism can be understood as a generic guiding principle how specific
states are selected amongst a highly degenerate ground state manifold and therefore as an
unconventional mechanism for the emergence of order.
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1.2. Quantum Spin Liquids

What if someone said
Promise lies ahead

Hopes are high in certain scientific circles
Dream Theater, The Great Debate

Discovering and understanding novel phases of matter is one of the main objectives of
condensed matter physics. Often, experimental discovery precedes the theoretical under-
standing. The FQHE, for example, was first discovered experimentally by Tsui, Stormer
and Gossard in 1982 [1] and important theoretical ideas such as the Laughlin wave func-
tion [88] have been proposed a posteriori. Quantum Spin Liquid phases, on the other hand,
are envisioned by theoreticians and direct experimental proof of their existence is still miss-
ing. They are disordered states of matter and may exhibit fascinating phenomena such
as the emergence of quasiparticles described by gauge theories. Thus, they substantially
differ from a featureless disordered paramagnetic state. There are many experimental
candidate systems in frustrated magnetism for which quantum spin liquid behavior could
be a plausible explanation [89], although a satisfactory proof of their existence in nature
has as of today not been given. Here we want to give a very short introduction to these
novel phases which is tailored to the needs of this thesis. More comprehensive reviews
have been given by Refs. [89–91].

We discuss the implications of a gap in the excitation spectrum of a system in sec-
tion 1.2.1. We then introduce the resonating valence bond state in section 1.2.2, which
has been amongst the first proposed spin liquid states. A general construction principle
for spin liquids generalizing the RVB state called the parton construction is presented
in section 1.2.3. We then discuss how this construction is applied to yield two types of
spin liquids: the chiral spin liquid in section 1.2.4 which is closely related to the FQHE
and Dirac spin liquids in section 1.2.5 which are envisioned to be gapless states without
long-range order.

1.2.1. Gapless and gapped phases

Long-range order in systems with a continuous symmetry like the Heisenberg model
Eq. (1.1.14) implies gapless excitations according to Goldstone’s theorem, cf. section 1.1.1.
The converse is not necessarily true. Quantum critical states at continuous phase transi-
tions usually exhibit algebraically decaying correlations

〈Si · Sj〉 ∼ |ri − rj |−η, (1.2.1)

while having a gapless excitation spectrum. Also extended phases may show this kind of
behavior. The most prominent example thereof is the spin-1/2 Heisenberg chain, whose
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Figure 1.8.: Gapless (a) and gapped (b) excitation spectra. Long-range ordered phases
are necessarily gapless. Other gapless states include critical states, the spin-
1/2 Heisenberg chain [12] and algebraic spin liquids [92, 93]. Gapped phases
are necessarily short-ranged and for half-odd integer spin the ground state
must be degenerate with periodic boundary conditions according to the Lieb-
Schultz-Mathis-Hastings theorem [94, 95].

spin correlation function also decays algebraically over distance according to the Bethe
ansatz solution [12]. Also in higher dimensions, such states have been proposed. One
example is the so-called Dirac or algebraic spin liquid [92, 93], which we will discuss
in more detail in section 1.2.5. On the other hand, gapped phases necessarily exhibit
exponentially decaying correlation functions [96],

〈Si · Sj〉 ∼ exp(−|ri − rj |/ξ). (1.2.2)

The ground state of a gapped phase can be degenerate. This degeneracy may be caused
by symmetry breaking a discrete symmetry. An example of such a phase would be valence
bond solid states shown in Fig. 1.9. Valence bond solids are spin singlets, thus do not break
rotational SU(2) symmetry. Yet, they break discrete lattice symmetries, like translation
or rotation symmetry. Such a state is for example realized as a phase in the so-called J-Q
models [97].

More excitingly, the degeneracy below the gap may be due to topological ordering. A
remarkable exactly solvable model that illustrates this mechanism is given by Kitaev’s
toric code model [41],

H = −
∑
s

As −
∑
p

Bp, (1.2.3)

where
As =

∏
j∈star(s)

σxj , Bp =
∏

j∈plaq(s)
σzj . (1.2.4)

Here, σxj and σzj denote the Pauli matrices. star(s) is the set of lattice sites in the “star”
of position s and plaq(s) is the set of lattice sites at the boundary of “plaquette” p, cf.
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Figure 1.9.: Valence Bond solids are regular coverings of a lattice with two spins paired up
in a singlet. They are not invariant under lattice symmetries such as rotational
or translational symmetry.

Fig. 1.10. Although this model is not realistic for actual materials in perfectly illustrates
many of the aspects of topological order. We will not discuss the details of the solution
here, but we refer the reader to the original article [41]. The gapped ground state is an
equal weight superposition of all possible loop configurations on the square lattice (the
language of loops can be directly translated to spin configurations, cf. Fig. 1.10b), which
is sometimes called a loop soup. Therefore, it does not break any lattice symmetries.
With periodic boundary conditions, there are 4 kinds of loop configurations that cannot
be continuously deformed into each other. They differ by having an even/odd number of
incontractible loops along the two periodic directions. These four kinds of loop configu-
rations are mutually orthogonal and thus yield a four-fold degenerate ground state. The
four-fold degeneracy for periodic boundary conditions stems from the fact that a torus
allows for incontractible loops along both periodicity directions.

The excitations of the toric code can also be exactly analyzed and the phase for ex-
changing particles can be explicitly computed and it turns out that these obey anyonic
statistics. The toric code can be regarded as a Hamiltonian implementation of a Z2 lat-
tice gauge theory [98] which admits a deconfined phase in two dimensions. Short-range
correlations, ground state degeneracy dependent on the topology (e.g. periodic boundary
conditions) of the lattice, anyonic braiding statistics and the relation to deconfined phases
of lattice gauge theories are typical hallmark features of quantum spin liquids. The toric
code exhibits what is called Z2 topological order. There are also other Z2 topologically
ordered states, as for example the nearest-neighbor RVB states, discussed in section 1.2.2
on a triangular lattice [31, 99]. A different kind of topological order is realized in chiral
spin liquids which we will discuss in section 1.2.4.

Interestingly, there are certain restrictions on the nature of the gapped, short-range
ordered phases. The statement is known as the Lieb-Schultz-Mattis-Hastings theorem [94,
95]. Assuming half-odd integer spin per unit cell with periodic boundary conditions and
certain technical assumptions on the geometry of the finite lattice (see [94, 95] for the exact
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(a) (b)

Figure 1.10.: The toric code model. The spins are placed on the links connecting the sites
of a square lattice. The terms As and Bp as in Eq. (1.2.4) are defined on
the “stars” and “plaquettes” as shown in (a). The language of spins can be
translated into the language of loops and strings as shown in (b). A string
segment is present if the corresponding spin points up.

prerequisites) the theorem states that a gapped system cannot have a unique ground state
in the thermodynamic limit. Instead, there must be degenerate ground states below the
gap. The prerequisites of the Lieb-Schultz-Mattis-Hastings theorem are fulfilled by the
extended Heisenberg models we investigate in chapters 4 and 5. The toric code, on the
other hand, does not fulfill these conditions since its unit cell consists out of two spin-
1/2 degrees of freedom. Nevertheless, it is an example of a gapped, topologically ordered
phase.

1.2.2. Resonating Valence Bond Liquids

The behavior of frustrated low dimensional quantum magnets may in many ways differ
from their classical unfrustrated counterparts. Due to the mechanisms discussed in sec-
tion 1.1.2 magnetic ordering may be suppressed even at zero temperature. Instead of
symmetry breaking phases novel states of matter can emerge.

A fundamental building block of quantum spin models in magnetism is the Heisenberg
bond between two neighboring spins J(Si · Sj). In the antiferromagnetic case J > 0,
its energy is minimized by the singlet state in contrast to the Néel state for classical
interaction. Given a disjoint covering of a lattice with dimers (i.e. pairs of two sites) we
can define a state that is just a tensor product of singlets on these dimers, cf. Fig. 1.11.
we will call such a state a valence bond configuration, similar to the regular valence bond
solid in Fig. 1.9. Heisenberg bonds on lattice sites connected by a dimer are energetically
minimized whereas other bonds are not minimized. Hence, such states are reasonable
variational wave functions for quantum magnets. Importantly, these states are manifestly
singlet states and are thus spin rotational SU(2) symmetric.

23



1. Introduction

Figure 1.11.: Valence bond configurations in an RVB state on the triangular lattice. The
RVB state proposed by [22] is an equal weight superposition of nearest-
neighbor valence bond configurations. More general RVB states may include
valence bond configurations with longer range singlet pairs and non-uniform
weights [11].

In a seminal paper [22], Anderson proposed that a superposition of valence bond config-
urations yields an extremely low variational energy for the triangular spin-1/2 Heisenberg
model. He considered the equal weight superposition of all dimer configurations where
dimers connect nearest neighbor bonds. This state is called a resonating valence bond
liquid, short RVB liquid and schematically shown in Fig. 1.11. As a superposition of all
possible nearest-neighbor valence bond configurations, it is not only SU(2) symmetric but
also symmetric under space group symmetries. The state is a truly quantum mechanical
state and does not possess a classical equivalent. Anderson found that the RVB state had
lower variational energy than spin-wave estimations on the energy of the Néel state. The
energy estimate for the RVB state given by [22] is

ERVB ≈ −(0.54± 0.01) NJ, (1.2.5)

where N denotes the number of sites and J the coupling constant. We compare this
energy to the actual ground state energy from numerical Exact Diagonalization on a 48
site cluster obtained in the course of this thesis, cf. section 3.4. The precise energy on
this cluster is given in table 3.1

E0 = −0.5586 NJ. (1.2.6)

The variational energy of the RVB state is therefore extremely close to the actual ground
state energy. Nevertheless, numerical studies later on provided conclusive evidence that
the system breaks SU(2) symmetry and exhibits 120◦ Néel order [25, 80, 100]. Therefore
the question arises whether this state can be realized as the ground state of a local spin
Hamiltonian. Although a toy model exactly realizing the above RVB state has for example
been given by Rokhsar and Kivelson [43], the question whether the RVB state is realized
in more realistic models remains open until today. It is now understood that RVB states
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1.2. Quantum Spin Liquids

on non-bipartite two-dimensional lattices may exhibit fractionalized excitations with Z2
topological order [31, 99] similar to the toric code model Eq. (1.2.3) [41].

The valence bond configurations (not necessarily nearest-neighbors) span the space of
singlet states on a lattice [101, 102] and thus, every singlet wave function can be expressed
as a linear combination of them. In order to extend the idea of the RVB state Ander-
son [11] proposed to investigate a certain subset of possible superpositions of valence bond
configurations. For constructing these states we first consider a fermionic Hilbert space of
up and down electrons on the lattice. Thus a typical configuration in this Hilbert space is
given by

|ψ〉 = |↑↓, ∅, ↑, ↓〉 , (1.2.7)

where double site occupancies ↑↓ and vacancies ∅ are allowed in contrast to pure spin
configurations. The operator which sets the part of a many-body wave function with
double site occupancy to zero is given by

PGW =
∏
i

(1− ni,↑ni,↓) , (1.2.8)

where ni,σ = c†iσciσ for fermionic creation and annihilation operators c†iσ and ciσ, σ =↑↓.
The operator PGW in Eq. (2.2.24) is called Gutzwiller projection [103, 104]. Anderson now
proposed to apply the Gutzwiller projection to BCS wave functions from the BCS theory
of superconductivity of the form

|ψBCS〉 =
∏

k∈B.Z.

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 , (1.2.9)

where uk, vk serve as variational parameters and

c†kσ = 1√
N

N∑
i=1

eik·ric†iσ, (1.2.10)

are fermionic creation operators in reciprocal space. The following computation shows
how the Gutzwiller projected BCS state PGW |ψBCS〉 is related to the RVB state

PGW |ψBCS〉 ∝ PGW
∏

k∈B.Z.

(
1 + vk

uk
c†k↑c

†
−k↓

)
|0〉 (1.2.11)

= PGW exp
[∑
k

vk
uk
c†k↑c

†
−k↓

]
|0〉 (1.2.12)

=
(∑

k

vk
uk
c†k↑c

†
−k↓

)N/2
|0〉 (1.2.13)

=

∑
i,j

aijc
†
i↑c
†
j↓

N/2 |0〉 , (1.2.14)
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where
aij =

∑
k∈B.Z.

vk
uk
eik(ri−rj). (1.2.15)

The second equality uses the fact that exp(f †) = 1+f † for fermionic operators f †, the third
equality projects to the correct particle number in the Taylor expansion of the exponential
function. If aij = aji the operator

aij(c†i↑c
†
j↓ + c†j↑c

†
i↓) = aij(c†i↑c

†
j↓ − c

†
i↓c
†
j↑) (1.2.16)

in Eq. (1.2.14) creates a singlet state on the sites i and j with coefficient aij . We see that
the state in Eq. (1.2.14) is again a superposition of dimer coverings on the lattice, but now
with different coefficients aij defined by uk and vk via Eq. (1.2.15). It may, therefore, be
regarded as a generalization of the initially proposed state in [22] and is thus also called
an RVB state.

1.2.3. Parton construction and mean-field theory

The Gutzwiller projection operator Eq. (1.2.8) transforms a fermionic wave function de-
fined on a fermionic Hilbert space into a spin wave function on the subspace with no
double-occupancies or vacancies. As in the case of the triangular lattice spin-1/2 Heisen-
berg models, cf. section 1.2.2, these Gutzwiller projected wave functions may yield low
variational energies and may even be realized as a ground state of pure spin systems
without charge degrees of freedom. A generic Heisenberg model

H =
∑
i,j

JijSi · Sj , (1.2.17)

may be considered as a low-energy effective Hamiltonian in the Mott-insulating regime
tij � U of a Hubbard model of type

HHubbard =
∑
i,j, σ

(
tijc
†
iσcjσ + H.c.

)
+ U

∑
i

ni↑ni↓. (1.2.18)

The spin operators Si on site i are introduced by

Si = 1
2
∑
αβ

c†iασαβciβ, (1.2.19)

where α, β =↓, ↑. The coupling constants Jij are related to the original hopping tij and
on-site repulsion U terms via Jij = 4|tij |2/U . The effective Heisenberg model can be
defined on the smaller Hilbert space of spin configurations with no double-occupancies or
vacancies. It is thus a simplification of the original Hubbard model.
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1.2. Quantum Spin Liquids

Starting from a pure spin model like Eq. (1.2.17) we can also take the opposite direction.
We introduce fermionic operators as in Eq. (1.2.19) to the Heisenberg model Eq. (1.2.17)
and investigate the resulting fermionic problem [105]

H =
∑
i,j,α,β

−Jij2 c†iαcjαc
†
jβciβ +

∑
i,j

Jij
2

(
ni −

1
2ninj

)
, (1.2.20)

where
ni = c†i↑ci↑ + c†i↓ci↓, (1.2.21)

is the number operator of fermions per site. The fermionic operators c†iα introduced via
Eq. (1.2.19) are then called parton or spinon operators. Several authors also use to call
the parton operators Abrikosov fermions or the decomposition Eq. (1.2.19) slave-boson
approach [105]. Now, the Hilbert space is enlarged and we are actually considering a
different problem. In order to describe the same model we have to enforce the constraint
of single site occupancy

ni = 1. (1.2.22)

The parton Hamiltonian Eq. (1.2.20) together with the single site occupation constraint
Eq. (1.2.22) are now completely equivalent to the original Heisenberg model Eq. (1.2.17).
The single site occupancy constraint Eq. (1.2.22) turns the second term in Eq. (1.2.20)
into a constant. We are thus left with the following Hamiltonian for the partons

Hparton =
∑
i,j,α,β

−Jij2 c†iαcjαc
†
jβciβ. (1.2.23)

The Hamiltonian Eq. (1.2.23) has an interesting fundamental property: local U(1) gauge
symmetry [106]. It is invariant under the local gauge transformations

c†iα → eiθic†iα. (1.2.24)

This symmetry is not present the original Hubbard model Eq. (1.2.18) since the hopping
terms c†iαcjα are only invariant under global phase transformations. The local gauge sym-
metry Eq. (1.2.24) is therefore an emergent property of the system in the Mott insulating
regime [106].

Generic ansatz wave functions from Gutzwiller projection

The equivalence between the original spin model Eq. (1.2.17) and the parton Hamiltonian
Eq. (1.2.23) together with the constraint Eq. (1.2.22) gives rise to a principle of construct-
ing variational ansatz wave functions generalizing the RVB approach. The problem in
exactly solving Eq. (1.2.23) are the four-fermion operators. In a mean-field approach, we
can replace c†iαcjα with its vacuum expectation values χij ≡ 〈c†iαcjα〉 or the operators c†iαc

†
jβ
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with ∆ij ≡ 〈c†i↑c
†
j↓〉. Furthermore, we replace the constraint Eq. (1.2.22) by a relaxing this

constraint to be valid only on average

〈ni〉 = 1. (1.2.25)

This condition can be realized by adding a chemical potential term of the form∑
i

µi(ni − 1) (1.2.26)

to the parton Hamiltonian Eq. (1.2.23) and adjusting the chemical potential µi. In sum-
mary, the Hamiltonian Eq. (1.2.23) can be approximated by a generic quadratic mean-field
Hamiltonian of the form [105]

Hmean =
∑
i,j,α

(χijc†iαcjα + H.c.) +
∑
i,j

(∆∗ijc
†
i↑c
†
j↓ + H.c.) +

∑
i

µi(ni − 1). (1.2.27)

The numbers χij , ∆ij and µi define the hopping, pairing and chemical potential ampli-
tudes, respectively. Since the mean-field Hamiltonian is quadratic in the parton operators
it is exactly solvable in the extended Hilbert space. In general the non-interacting mean-
field ground state |ψmf

0 〉 will be given by a filled Fermi sea or a BCS type wave function,
depending on whether or not the pairing amplitudes ∆ij are non-zero. In order to create
an ansatz wave function for the ground state of the original spin model Eq. (1.2.17) we
can again set the coefficients of configurations with double site occupancy or vacancies to
zero via Gutzwiller projection Eq. (1.2.8)

|ψGPWF〉 = PGW |ψmf
0 〉 . (1.2.28)

We will call such a state a Gutzwiller projected parton wave function, short GPWF.
The previously defined RVB states in Eq. (1.2.14) are a special case of these GPWFs.

Fourier transforming Eq. (1.2.27) with a translationally invariant ansatz χij and ∆ij yields
a BCS type mean-field Hamiltonian of the form

H =
∑
k,σ

χkc
†
kσckσ +

∑
k

(∆∗kc
†
k↑c
†
−k↓ + H.c.), (1.2.29)

whose solution after Bogoliubov transformation is given by the BCS state in Eq. (1.2.9).
The coefficients of these ansatz wave functions in the parton construction can be com-

puted as a Slater determinant. We will discuss the numerical evaluation of properties and
coefficients of these wave functions in section 2.2.3. It turns out that studying these wave
functions can be done numerically in a computationally efficient way [47].

The manipulations and approximations leading from Eq. (1.2.17) to Eq. (1.2.27) are
actually quite crude. First of all, the Hilbert space is enlarged and a fermionic model
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1.2. Quantum Spin Liquids

Eq. (1.2.20) is introduced. From Eq. (1.2.23) to Eq. (1.2.27) we replace the single occu-
pancy constraint Eq. (1.2.22) by its relaxed average version Eq. (1.2.25). The parameters
χij and ∆ij may then be chosen to satisfy self-consistency equations,

〈c†iαcjα〉 = χij , 〈c†i↑c
†
j↓〉 = ∆ij , (1.2.30)

and the chemical potentials µi may be adjusted to satisfy the average constraint Eq. (1.2.25).
The resulting quadratic mean-field Hamiltonian can then be analyzed and parton mean-
field phase diagrams can be worked out. Yet, the predictive power of such an approach is
limited and necessarily needs to be complemented with different approaches. Often, vari-
ational energies are computed using Variational Monte Carlo, cf. section 2.2.3 or overlaps
with numerically precise ground states from Exact Diagonalization can be calculated.

Fluctuations around mean-field theory

For taking into account fluctuations around the zeroth-order mean-field theory of the
parton Hamiltonian Eq. (1.2.27) we introduce the path integral formulation. The partition
function can be written as [105]

Z =
∫
DciDµiDχij exp

{
i

∫
dt L −

∑
i

µi(t)(ni − 1)
}
, (1.2.31)

where the Lagrangian L is given by

L =
∑
i

c†i i∂tci −
∑
i,j,σ

−Jij2
[
(c†iσcjσχji + H.c.)− |χij |2

]
, (1.2.32)

with the Hubbard-Stratonovich fields χij . The path integral formulation also allows de-
riving effective theories for specific ansätze for in section 1.2.4 and section 1.2.5.

We emphasize that in Eq. (1.2.31) the chemical potentials µi(t) are now explicitly time-
dependent. This reproduces the original single occupancy constraint Eq. (1.2.22) since
functional integration over the µi fields yields∫

Dµi exp
{
i

∫
dt µi(ni − 1)

}
= δ (ni − 1) . (1.2.33)

Eq. (1.2.31) and Eq. (1.2.32) are therefore again equivalent to the original spin system
Eq. (1.2.17).

The fluctuating fields χij can now be decomposed into amplitude fluctuations χ̄ij and
phase fluctuations aij ,

χij = χ̄ije
iaij . (1.2.34)

According to [105] the amplitude fluctuations should be gapped and χ̄ij may, therefore,
be regarded as a constant. Still, phase fluctuations aij are assumed as dynamical fields.
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The effective Hamiltonian is then given by

H =
∑
i,j,σ

(χ̄ijc†iσcjσeiaij + H.c.) +
∑
i

µi(ni − 1). (1.2.35)

The system now exhibits a gauge structure. Gauge transformations of the type

c†iσ → eiθic†iσ, aij → aij + θj − θi, (1.2.36)

leave the Hamiltonian Eq. (1.2.35) invariant. Eq. (1.2.35) now describes a lattice gauge
theory with U(1) lattice gauge fields aij and µi.

Let us compare the two effective Hamiltonians Eq. (1.2.27) and Eq. (1.2.35). A com-
mon feature for both is that we have to make an ansatz for the coefficients χij or χ̄ij
respectively. Apart from this Eq. (1.2.27) describes free partons which are essentially
uncorrelated. Consequently, this approximation cannot correctly describe the strong cor-
relations present in Heisenberg systems. Correlations are taken into account via the gauge
fields in Eq. (1.2.35). The only approximation made when passing from the Heisenberg
model to Eq. (1.2.35) is to assume a constant amplitude in the Hubbard-Stratonovich fields
χij , because amplitude fluctuations are expected to be gapped [105]. It is thus conjectured
that the lattice gauge theory Eq. (1.2.35) may correctly describe strongly correlated phases
of Heisenberg spin systems. Phases of the lattice gauge theory Eq. (1.2.35) correspond to
phases of the original spin model.

A central question in the study of gauge theories is whether the matter fields (in our
case the partons) are confined or deconfined. Particles are said to be confined if the energy
cost for separating them diverges at large distances. A typical example of this is quark
confinement in quantum chromodynamics. An example of deconfinement is quantum
electrodynamics in 3 + 1 dimensions where the potential energy between two electrons
is given by the Coulomb interaction and two electrons can be separated by an arbitrary
distance with finite energy cost. For spin systems, we may now ask the same question
whether two partons can be separated by an arbitrary distance at finite energy cost.
Deconfined phases of lattice gauge theories such as Eq. (1.2.35) are essentially quantum
spin liquids.

1.2.4. Chiral Spin Liquids

One of the first proposed parton ansätze was the chiral spin liquid, short CSL state [23].
The word ”chiral” refers to the violation of parity symmetry (i.e. spatial reflection

symmetry) and time reversal symmetry. A quantity that measures the breaking of these
two symmetries is the so-called scalar chirality operator,

Si · (Sj × Sk). (1.2.37)

A reflection symmetry reverses the orientation of a path i → j → k whereas time re-
versal symmetry transforms the spin operators as Si → −Si, thus changing the sign in
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(a) (b)

Figure 1.12.: Parton ansatz for chiral spin liquids as proposed by [23]. The hopping am-
plitudes in (a) are chosen such that there is π flux through the squares and
π/2 flux through triangles. The band structure of this parton ansatz features
two bands separated by a gap with Chern number ±1.

Eq. (1.2.37). Certain magnetic orderings may also not be parity or time reversal symmetry
invariant like the tetrahedral order in Fig. 1.7.

In contrast to chiral magnetic orderings, a CSL is a chiral gapped quantum state of
matter whose low-energy degrees of freedom are described by an effective Chern-Simons
theory. We will explain the latter statement in more detail below. One way of constructing
this phase is via a parton ansatz that breaks time-reversal symmetry as proposed by
Ref. [23]. Consider complex hopping amplitudes in the parton ansatz Eq. (1.2.27). The
hopping terms are then chosen such that we obtain a band structure where the valence
band has non-zero Hall conductivity σxy 6= 0,

jy = σxyEx, (1.2.38)

where jy denotes the Hall current as a response to the applied electric field Ex. The famous
TKNN formula [107] tells us that the Hall conductivity is quantized and proportional to the
integer Chern number of the occupied bands. Ref. [23] proposed to choose a parton ansatz
with a gapped band structure where the bands have non-zero Chern number. The specific
ansatz proposed by Ref. [23] is shown in Fig. 1.12. The unit cell of the square lattice is
enlarged to two sites and the fluxes of the χij are chosen such that there is π flux through
the squares and π/2 flux through triangles. The band structure of this ansatz consists
of two bands separated by a finite gap with Chern number ±1. The ground state of the
free parton Hamiltonian is obtained by filling up the valence band with spin up and spin
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down partons. The ansatz itself is not translationally invariant. Nevertheless, there are
still gauge degrees of freedom for choosing a phase locally, i.e. the gauge transformation,

c†iα → eiθic†iα, (1.2.39)

leaves the ansatz invariant. A translation in the x-direction followed by the gauge trans-
formation,

c†iα → (−1)ixc†iα, (1.2.40)
restores the original ansatz. Thus, the projected wave function is translationally invariant.
Nevertheless, the flux through elementary plaquettes or triangles cannot be altered by
a gauge transformation like Eq. (1.2.39). Hence, the state with π/2-flux through the
triangles is not gauge-equivalent to the state with −π/2-flux. Time-reversal symmetry is
thus explicitly broken by this state.

Since the parton band structure is gapped, an effective theory of the gauge fields aij
and µi in the parton mean-field Hamiltonian Eq. (1.2.35) can be obtained by integrating
out the parton fields in the path integral formulation Eq. (1.2.31). The resulting theory is
a pure gauge theory. Taking the proper continuum limit it can be shown that the effective
action is given by [23]

S =
∫

d3x
1
2σxyaµ∂νaλεµνλ +O(1/g2), µ = 0, 1, 2. (1.2.41)

Here a0 and a1,2 denote the continuum limits of the lattice gauge fields µi and aij respec-
tively and the neglected terms are of order 1/g2, where g is proportional to the gap of the
parton spectrum. The action Eq. (1.2.41) is called a Chern-Simons theory.

Chern-Simons theory prominently occurs in the theory of the fractional quantum Hall
effect also as a low-energy effective field theory describing the plateaux of the Hall re-
sistivity. Chiral spin liquids can, therefore, be considered as a spin analog of FQHE
wave function. Response functions and quasiparticle statistics are encoded in the effective
Chern-Simons theory Eq. (1.2.41). The Chern-Simons theory for the ansatz in Fig. 1.12
supports semionic statistics, i.e. braiding two parton excitations yields a statistical phase
of π/2. We will study analogous states for triangular and kagome lattices in chapters 4
to 6. Semionic spinon statistics implies a twofold degenerate ground state for periodic
boundary conditions [108]. This degeneracy can be observed well in numerical Exact
Diagonalization studies.

Historically, the first construction of the CSL phase by Kalmeyer and Laughlin [24] is
in close analogy to the Laughlin wave functions of the fractional quantum Hall effect. For
a given spin configuration |σ1 . . . σN 〉 with Sztot = 0 let (xi, yi) be the positions of the N/2
up spins |↑〉. The chiral spin liquid wave function as defined by Ref. [24] is given by its
coefficients 〈σ1 . . . σN |CSL〉 in the Sz basis,

〈σ1 . . . σN |CSL〉 =
∏
j<k

(zj − zk)2 exp

− 1
4l20

N/2∑
i=1
|zi|2

 , (1.2.42)
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(a) (b)

Figure 1.13.: Dirac spin liquids. (a) parton ansatz of the π-flux state in [92, 93]. The
phases in the hopping parameters χij are chosen that each plaquette has
π-flux. (b) band structure of the π-flux parton ansatz. There are gapless
excitations at the Fermi level with two distinct Dirac cones.

where zi = xi + iyi is the complex coordinate of the i-th up spin and l0 is called the
magnetic length. This corresponds to the bosonic Laughlin state [88] at filling fraction
ν = 1/2 of the fractional Quantum Hall effect.

This CSL state Eq. (1.2.42) can be proven to be a singlet state [109], which is not
obvious at first sight. Spin correlations,

〈CSL|Si · Sj |CSL〉 , (1.2.43)

can be computed numerically and have been shown to decay exponentially with distance.
Quasihole wave functions can be regarded as excitations of the CSL wave function. Their
semionic statistics can then directly be proven [109]. It is understood, that the Kalmeyer-
Laughlin construction [24] yields the same CSL phase as the parton construction by
Ref. [23].

1.2.5. Dirac Spin Liquids

Another prominent type of mean field parton ansätze are Dirac spin liquids, sometimes
also called U(1) or algebraic spin liquids. Their parton band structure contains Dirac
cones at the Fermi level, similar to the graphene band structure. This kind of ansatz has
first been proposed by [92, 93]. The specific choice in [92, 93] is called the π-flux state.
Its mean field parameters and band structure are shown in Fig. 1.13.
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In contrast to the chiral spin liquid ansatz in Fig. 1.12 the parton band structure is
gapless. Consequently, the partons cannot safely be integrated out as for the chiral spin
liquids. The effective low energy theory of the ansatz is described by 2×2 fermions, two for
spin up/down times two for the Dirac cones of the band structure, which are coupled to the
U(1) gauge fields aij and µi in Eq. (1.2.35). The behavior of such gauge theories is not fully
understood as of today. It is therefore not clear whether the gapless excitations are stable
with respect to the gauge fluctuations. It has has been shown that the Dirac spin liquid
indeed exhibits gapless excitations with algebraically decaying correlation functions [110].
It is thus an example of a gapless state without long-range order. The Dirac spin liquid
has been proposed as a wave function able to describe deconfined criticality [111], thus
a wave function describing a quantum critical point. Another proposal suggests that the
Dirac spin liquid may actually yield an extended phase in two dimensions [112], at least if
the number of Dirac cones or the number of flavors (up/down) is increased. This can be
viewed as an analogy to the Heisenberg spin-1/2 chain in one dimension.

Similar states have been proposed on the kagome and the triangular lattice [36, 113] for
describing spin liquid phases whose nature is still debated.
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Methods

Set the controls for the heart of the sun.

Pink Floyd

2.1. Exact Diagonalization

Solving the stationary Schrödinger equation,

H |ψ〉 = E |ψ〉 , (2.1.1)

of nonrelativistic quantum mechanics amounts to computing all eigenstates |ψ〉 and en-
ergies E of the Hamiltonian H. For problems without an exact analytical solution, the
diagonalization of the Hamiltonian could be performed numerically. This method to nu-
merically compute properties of a quantum system is called Exact Diagonalization (ED).
Since eigenvectors and eigenvalues of matrices can be obtained up to high precision with
modern algorithms, ED is a powerful and reliable numerical tool. Computing every single
eigenvalue and eigenstate of the Hamiltonian completely solves the stationary Schrödinger
equation, such that all physical quantities can in principle be derived from this solution.
This numerical procedure is called full diagonalization. In order to diagonalize the Hamil-
tonian this way, a variety of numerical algorithms can be employed [114]. Although there
are many differences between those, the computational effort of these methods is of the or-
der O(D3), where D is the linear dimension of the matrix. On present-day supercomputers
matrices with linear dimension up to approximately N ≈ 106 can be fully diagonalized.

For quantum many-body systems the Hilbert spacesH are typically fermionic or bosonic
Fock spaces or tensor products of local spin systems. The dimension of these kinds of
Hilbert spaces increases exponentially with the number of particles considered. Thus, full
diagonalizations become infeasible if the particle number is too large. If one is only inter-
ested in the ground state or several low-lying excitations iterative methods can be applied
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that yield approximate eigenvalues at the boundary of the spectrum. The most prominent
iterative algorithm for computing extremal eigenvalues and eigenvectors of Hermitian ma-
trices is the Lanczos algorithm [115], which we will discuss in section 2.1.2. For sparse
matrices, the complexity of the computation for achieving a fixed precision may effectively
reduce to O(D). This allows for computations with orders of magnitude larger Hilbert
spaces. For ED in condensed matter systems Hilbert space dimensions of D ≈ 1011 can
currently be attained.

In this chapter, we introduce the basic principles of the ED method. In section 2.1.1
we explain how to represent Hilbert spaces and operators in a computer. We discuss
basic principles and some practical issues about the Lanczos algorithm in section 2.1.2.
Symmetries and the use of symmetry adapted wave functions for block diagonalization
of matrices are discussed in section 2.1.3. We present novel algorithms for working with
symmetry adapted wave functions and efficient distributed memory parallelization in chap-
ter 3. There, we also present benchmarks for our implementation of these ideas.

2.1.1. Representing Hilbert spaces and operators

The first step towards practical numerical computations is to choose a basis of the Hilbert
space. For spin systems with local dimension d we may choose the canonical basis of
tensor products of local spins. Spin configurations are represented by an integer value via
its d-ary representation. For instance, the spin-1/2 state of four particles |↑↑↓↑〉 is encoded
as

|↑↑↓↑〉 → |1101〉 → (1101)2 = (13)10. (2.1.2)

In general, we encode a spin configuration |σ〉 = |σ1, . . . , σN 〉 on N lattice sites by

int(|σ〉) ≡
N∑
k=1

σkd
N−k, (2.1.3)

where d denotes the local dimension of the Hilbert space. Bases of fermionic or bosonic
Hilbert spaces may be encoded correspondingly.

Given a basis |σn〉, n = 1, . . . , D, of the Hilbert space we can compute the matrix ele-
ments 〈σn|H|σm〉 of the Hamiltonian. For example, we can compute the matrix elements
of a spin exchange term on a spin-1/2 state

1
2(S+

2 S
−
3 + S−2 S

+
3 ) |(13)10〉 = 1

2(S+
2 S
−
3 + S−2 S

+
3 ) |↑↑↓↑〉 = 1

2 |↑↓↑↑〉 = 1
2 |(11)10〉 . (2.1.4)

Thus, we have
〈(11)10|

1
2(S+

2 S
−
3 + S−2 S

+
3 )| |(13)10〉〉 = 1

2 . (2.1.5)

We can then store all the elements in a numerical D×D matrix for full diagonalization. In
case we want to apply iterative methods we may also store the elements in a sparse-matrix
format or compute matrix-vector products on-the-fly without storing any matrix elements.
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2.1. Exact Diagonalization

2.1.2. The Lanczos algorithm

Iterative methods drastically reduce the computational effort in computing extremal eigen-
values and eigenvectors,

A |v〉 = λ |v〉 , (2.1.6)

of large matrices A ∈ CD×D, where D is the dimension of the matrix. Typically a series
of matrix-vector multiplications is performed to yield improving approximations to eigen-
values and eigenvectors. Krylov subspace methods such as the Lanczos algorithm [115]
for Hermitian matrices are powerful and efficient iterative methods.

We give a short rationale for this kind of algorithms where we restrict ourselves to the
case when A is Hermitian, A† = A. The Rayleigh coefficient of a matrix A is defined as

rA(|v〉) ≡ 〈v|A|v〉
〈v|v〉

, (2.1.7)

for all vectors |v〉 ∈ V ≡ CD. The Rayleigh coefficient evaluated at an eigenvector |λ〉
yields the corresponding eigenvalue λ,

rA(|λ〉) = λ. (2.1.8)

Minimizing the Rayleigh coefficient corresponds to finding a minimal eigenvalue λ0 of the
matrix A

λ0 = min
v∈V

rA(|v〉). (2.1.9)

The minimal eigenvalue can be approximated by minimizing the Rayleigh coefficient in an
n-dimensional subspace

Vn = span{|v1〉 , . . . , |vn〉} ⊆ V. (2.1.10)

To further improve the approximation we can apply the gradient descent method. The
direction of steepest descent for Hermitian matrices A is given by

−∇rA(|v〉) = 2
〈v|v〉

(rA(|v〉) |v〉 −A |v〉). (2.1.11)

The Krylov space of order n of a matrix A and a starting vector |V1〉 is defined as

Kn(A, |v1〉) ≡ span {|v1〉 , A |v1〉 , . . . , An |v1〉}. (2.1.12)

The direction of steepest descent Eq. (2.1.11) in the n-th Krylov space Kn(A, |v1〉) is an
element of the next (n+ 1)-th Krylov space Kn+1(A, |v1〉). Thus, minimizing the Rayleigh
coefficient in higher order Krylov spaces increases the accuracy of the approximation in
Eq. (2.1.9) by means of the gradient descent method.
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In general the vectors |v1〉 , A |v1〉 , . . . , An |v1〉 are not orthonormal. The Lanczos method
[115] iteratively constructs an orthonormal basis of the Krylov spaces. Given an orthonor-
mal basis |v1〉 , |v2〉 , . . . , |vn〉 of the n-th Krylov space we can use Gram-Schmidt orthog-
onalization to construct an orthonormal basis of the (n + 1)-th Krylov space. The next
(n+ 1)-th orthonormal basis vector is given by

|vn+1〉 = |v̂n+1〉
‖v̂n+1‖

, where |v̂n+1〉 = A |vn〉 −
n∑
i=0
〈vn|A|vi〉 |vi〉 . (2.1.13)

Using the orthogonality of the vectors |vk〉 and the hermitecity A† = A, this procedure
simplifies to (see e.g. [116])

|vn+1〉 = |v̂n+1〉
‖v̂n+1‖

with |v̂n+1〉 = A |vn〉 − 〈vn|A|vn〉 |vn〉 − ‖v̂n‖ |vn−1〉 . (2.1.14)

The prescription Eq. (2.1.14) is called the Lanczos recursion. The vectors |vk〉 are called
the Lanczos vectors. We introduce the usual abbreviations found in literature,

αk ≡ 〈vk|A|vk〉 , βk ≡ ‖v̂k‖ . (2.1.15)

With these abbreviations the Lanczos recursion reads

|vn+1〉 = |v̂n+1〉
βn+1

, where |v̂n+1〉 = A |vn〉 − αn |vn〉 − βn |vn−1〉 . (2.1.16)

By defining the matrix of Lanczos vectors

Vn = (v1| · · · |vn) , (2.1.17)

we can write the recursion Eq. (2.1.16) as [116]

AVn = VnTn + |v̂n+1〉 eTk , (2.1.18)

where ek is the k-th canonical basis vector of Rk and the matrix Tn, called the n-th
T-matrix, is a tridiagonal matrix given by

Tn =



α1 β1 0 · · · 0

β1 α2 β2 0
...

0 β2
. . .

. . . 0
... . . . αn−1 βn−1
0 · · · 0 βn−1 αn


. (2.1.19)

Since Tn = V †nAVn, the T-matrix can be interpreted as the projection of the matrix A onto
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2.1. Exact Diagonalization

(a) (b)

Figure 2.1.: (a) Convergence of the T-matrix eigenvalues. The matrix A diagonalized is
the Hamiltonian of the spin-1/2 Heisenberg antiferromagnetic model on a 50
site square lattice in the ground state symmetry sector. The dimension of
this sector is D ≈ 3 · 1011. (b) Logarithmic plot of λi − λ0. The speed of
convergence of the ground state energy is exponential and a precision of 10−12

is reached after 53 Lanczos iterations.

Kn(A, |v1〉). The T-matrix Tn thus approximates the matrix A on the n-th Krylov space.
By λk,Tn and |λk,Tn〉 we denote the eigenvalues and eigenvectors of the n-th T-matrix. The
sequence (λk,Tn)n∈N converges to an eigenvalue λk of A and the sequence (Vn |λk,Tn〉)n∈N
converges to the corresponding eigenvector |λk〉. The speed of convergence is typically
exponential. Thus, already a small number of iterations yields a good approximation to
the eigenvalues and eigenvectors of A. To converge for the minimal eigenvalue in condensed
matter systems in this thesis typically 50 − 200 iterations suffice. The T-matrix is then
diagonalized by a full diagonalization algorithm. Yet, a detailed analysis of the convergence
behavior is subtle and we refer the reader to Refs. [117, 118]. A practical example of this
convergence is shown in Fig. 2.1 for a matrix A of dimension D ≈ 3 · 1011.

There are several practical issues concerning the Lanczos iteration. First of all, there
are several ways of how to actually compute a single Lanczos iteration which are compared
in Refs. [119–121]. If the matrix A is not stored in memory, thus matrix-vector multipli-
cations are computed on-the-fly, the main memory requirement of the Lanczos algorithm
is the storage of the Lanczos vectors. We make use of two simple variants which require
storing either 2 or 3 vectors depending on whether the matrix A is real symmetric or
complex Hermitian, cf. algorithm 2.1 and algorithm 2.2.

Another issue concerning the convergence of the Lanczos algorithm is the loss of or-
thogonality of the Lanczos vectors due to finite precision machine arithmetic. In several
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Algorithm 2.1 Real-symmetric Lanczos step [120], only the current Lanczos vector |vn〉
and a temporary vector |w〉 are stored. Applicable, if A is real and symmetric. In the first
step |w〉 is initialized as the zero vector.

if n = 1 : |w〉 ← 0, β1 ← 0
|w〉 ← A |vn〉 − βn |w〉 . r.h.s. |w〉 = |vn−1〉
αn ← 〈w|vn〉
|w〉 ← |w〉 − αn |vn〉
βn+1 ←

√
〈w|w〉

Swap |vn〉 ↔ |w〉
|vn+1〉 ← 1

βn+1
|vn〉

Algorithm 2.2 Complex-Hermitian Lanczos step, storage of two Lanczos vectors |vn〉
and |vn−1〉 and a temporary vector |w〉 is required.

if n = 1 : β1 ← 0
|w〉 ← A |vn〉
αn ← 〈w|vn〉
|w〉 ← |w〉 − αn |vn〉 − βn |vn−1〉
|vn−1〉 ← |vn〉
βn+1 ←

√
〈w|w〉

|vn+1〉 ← 1
βn+1

|w〉
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2.1. Exact Diagonalization

applications an explicit reorthogonalization of the Lanczos vectors is necessary. A survey
of these methods is given by Ref. [121]. In practice, if one is only interested in a ground
state or first excited state of some specific condensed matter system, it turns out that
this reorthogonalization is not necessary. Also, reorthogonalization increases the mem-
ory requirements. Therefore, we always employ the simple Lanczos recursion without
reorthogonalization in this thesis.

The Lanczos iterations construct the T-matrix which yields approximate eigenvalues
λk,Tn . In case we are interested in approximate eigenvectors of A we have to compute
Vn |λk,Tn〉. In order not to store all Lanczos vectors in Vn we first run the Lanczos algorithm
to compute the T-matrix eigenvectors |λk,Tn〉 and then, in a second run, starting from the
same initial vector |v1〉, compute the linear combination Vn |λk,Tn〉. This requires one
additional vector to be stored in memory.

2.1.3. Symmetries and symmetry-adapted wave functions

Apart from being most fundamental properties of a system, symmetries can be employed
to divide an ED calculation into smaller pieces by block diagonalizing the Hamiltonian.
In this chapter, we review the notion of quantum numbers and symmetry-adapted wave
functions in a group theoretical setting. For basics on group representation theory in
quantum mechanics, we refer to [122]. We then explain how, in principle, numerical
calculations in a symmetrized basis can be performed.

Quantum numbers and degenerate eigenstates

A symmetry of a Hamiltonian H is an operator g that commutes with the Hamiltonian,

[H, g] = 0. (2.1.20)

Denote by |n, α〉 the eigenfunctions of H satisfying

H |n, α〉 = En |n, α〉 , (2.1.21)

where the index α denotes the different degenerate eigenstates with eigenvalue En. Due
to

Hg |n, α〉 = gH |n, α〉 = Eng |n, α〉 , (2.1.22)

the symmetry g leaves the eigenspaces for a given eigenvalue En invariant. A group G of
symmetries defines a representation ρn on the degenerate eigenspaces via

Γn : g 7→ Γ(g), (2.1.23)

where Γ(g)αβ ≡ (〈n, α|g|n, β〉)αβ are matrices with dimension equal to the degeneracy of
the eigenvalue En. Thus, every degenerate set of eigenvalues can be labeled by irreducible
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Figure 2.2.: Block diagonalization of a Hamiltonian. The Hilbert space H is split into sub-
spaces Hρi corresponding to an irreducible representation ρi of the symmetry
group. The Hamiltonian transformed to the basis of symmetry-adapted wave
functions is block diagonal.

representations of the symmetry group, its quantum numbers. Common examples are
momentum quantum numbers for translational symmetry, total spin quantum numbers
for spin rotational SU(2) symmetry for spin systems or parity for inversion symmetry.

A basis of the Hilbert space can be chosen such that the Hilbert space decomposes into
a direct sum of subspaces,

H =
⊕
ρ

Hρ, (2.1.24)

where the states in each subspace Hρ transform according to a given irreducible repre-
sentation ρ of the symmetry group G. We will work out how the exact form of these
symmetry-adapted wave functions and their transformation properties for different kinds
of symmetries in the following paragraphs. Importantly, the Hamiltonian does not couple
states in different irreducible representation spaces,

ρ 6= σ ⇒ 〈ψρ|H|φσ〉 = 0 for |ψρ〉 ∈ Hρ and |φσ〉 ∈ Hσ. (2.1.25)

Consequently, if we group the basis states of a given irreducible representation together we
will have block diagonalized the Hamiltonian where every block is labeled by its irreducible
representation, as shown in Fig. 2.2. We will now disuss the general block diagonalization
principle for several specific symmetries.
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2.1. Exact Diagonalization

Particle number conservation

Particle number conservation is often encountered in spin systems. For SU(2) Heisenberg
spin systems like

H =
∑
i,j

JijSi · Sj , (2.1.26)

the total magnetization
Sztot =

∑
i

Szi , (2.1.27)

is a conserved quantity. Grouping together states of the same Sztot will therefore block
diagonalize the Hamiltonian. The total Sztot labels the irreducible representations of the
continuous U(1) symmetry,

g(θ) = eiθS
z
tot , (2.1.28)

and the basis states transform according to

g(θ) |ψ〉 = eiθn |ψ〉 , if Sztot |ψ〉 = n |ψ〉 . (2.1.29)

We see that eigenstates in the Sz basis are already symmetry-adapted wave functions.
While Eq. (2.1.28) and Eq. (2.1.29) are not necessary to understand and implement par-
ticle number conservation, their analogs for space group symmetries are essential for con-
structing the symmetry-adapted wave functions.

Discrete symmetries

Translational or point group symmetries imply (angular-)momentum conservation. These
symmetries form a finite discrete group on finite size lattices. Following the general idea of
decomposing the Hilbert space into irreducible representations in Eq. (2.1.24) we can use
them to further decompose out Hilbert space into momentum or point group representation
sectors. We review how to build the basis of symmetry-adapted wave functions for a
discrete symmetry group G. Detailed derivations can be found in [122]. Let

Γρ : g 7→ Γρ(g), (2.1.30)

be an irreducible representation of the symmetry group G such that the representation
matrices Γρ(g) are unitary. Given an arbitrary state |ψ〉 ∈ H its projection onto symmetry-
adapted wave functions with irreducible representation ρ is given by [122]

|ψρn〉 ≡
1

Nρ,n,ψ

∑
g∈G

(Γρ(g)nn)∗ g |ψ〉 , (2.1.31)

where Nρ,n,ψ is a normalization constant and n ∈ {1, . . . , dρ}, where dρ is the dimen-
sion of the representation Γρ. The symmetry-adapted wave function in Eq. (2.1.31) now
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transforms according to the n-th row of the representation Γρ, i.e.

g |ψρn〉 =
∑
m

Γρ(g)nm |ψρm〉 . (2.1.32)

symmetry-adapted wave functions from different representations Γρ are mutually orthonor-
mal, i.e.

〈ψρn|ψηm〉 = δρηδnm. (2.1.33)

In case we consider a one-dimensional representation of the symmetry group Eq. (2.1.31)
simplifies to

|ψρ〉 ≡ 1
Nρ,ψ

∑
g∈G

χρ(g)∗g |ψ〉 , (2.1.34)

with the transformation property

g |ψρ〉 = χρ(g) |ψρ〉 , (2.1.35)

where χρ(g) denotes the character of the representation Γρ and Nρ,ψ is a normalization
constant.

Example (translational symmetries): We consider a spin-1/2 model on a L× L square
lattice with periodic boundary conditions and lattice constant a = 1. The translational
symmetry group consists out of L translations in the x-direction times L translations in
the y-direction. We thus consider the Abelian symmetry group

G = ZL × ZL. (2.1.36)

Its one-dimensional irreducible representations can be labeled by the lattice momenta

kmn = (km, kn) = (2πm/L, 2πn/L), m, n = 0, . . . , L− 1 (2.1.37)

whose characters are given by the Bloch factors

χkmn(tpx · tqy) = ei(km·p+kn·q), (2.1.38)

where tpx · tqy denotes a translation by p lattice sites in the x-direction and q lattice sites in
the y direction. The symmetry-adapted wave functions are then given by

|ψkmn〉 = 1
Nkmn,ψ

L∑
p,q=1

ei(km·p+kn·q)(tpx · tqy) |ψ〉 . (2.1.39)
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For a given finite discrete symmetry group all irreducible representations Γρ(g) can in
principle be worked out. From the generic Eq. (2.1.31) and Eq. (2.1.34) the symmetry-
adapted wave functions are then obtained. Discrete local symmetries like spin flip sym-
metry for spin-1/2 systems,

f =
∏
i

σxi , (2.1.40)

can also be considered within this framework. This symmetry defines a Z2 symmetry
group with an even and odd parity irreducible representation.

Moreover, if the symmetry group is a direct product of two subgroups G = A × B the
representations of G are given by tensor products,

Γ(ρ,ν)(a · b) = Γρ(a)⊗ Γν(b), (2.1.41)

of representations Γρ(a) and Γν(b) of A and B. The characters are simply the product of
the characters of A and B

χ(ρ,ν)(a · b) = χρ(a) · χν(b). (2.1.42)

This can be applied to construct symmetry-adapted wave functions with a space group
S and a local symmetry group like Z2 for spin flip symmetry. Since local symmetries
like the spin flip symmetry commute with space group symmetries the symmetry group
G = S × Z2 is a direct product. Hence, the representation matrices and characters of G
are given by Eq. (2.1.41) and Eq. (2.1.42).

For semi-direct products of groups, Eq. (2.1.41) and Eq. (2.1.42) do not hold in general.
Space groups are in general only a semi-direct product of the translation group and the
point group. We briefly discuss the representation theory of two-dimensional space groups
in appendix A.

Computations in the symmetrized basis

From now we only consider one-dimensional representations of the symmetry group. We
change the basis from pure spin configurations,

|σ〉 = |σ1 . . . σN 〉 ∈ H, (2.1.43)

to symmetry-adapted spin configurations,

|σρ〉 ∈ Hρ, (2.1.44)

as defined in Eq. (2.1.34). For numerical implementations the question arises how to encode
the symmetrized basis states |σρ〉 and how to explicitly compute the matrix elements

〈τ ρ|H|σρ〉 . (2.1.45)

45



2. Methods

The symmetry group G decomposes the space of pure spin configurations into disjoint
orbits,

Orbit(|σ〉) = {g |σ〉 |g ∈ G}. (2.1.46)

For every irreducible representation an orbit corresponds to a symmetrized state via
Eq. (2.1.34). To encode such a symmetrized state we simply choose a single state |σ̃〉 ∈
Orbit(|σ〉) which unambigously identifies the symmetrized state. We call the state |σ̃〉 the
representative of Orbit(|σ〉).

To choose a specific state in Orbit(|σ〉) it is canonical to choose the state with the
smallest integer encoding,

|σ̃〉 = gσ |σ〉 , where gσ = argmin
g∈G

int(g |σ〉). (2.1.47)

To compute the matrix elements of the Hamiltonian in Eq. (2.1.45) we decompose the
Hamiltonian,

H =
∑
k

Hk, (2.1.48)

as a sum of non-branching terms Hk, i.e. for every single spin configurations |σ〉 there is
only one other spin configuration |τ 〉, such that

Hk |σ〉 = hk |τ 〉 , (2.1.49)

where hk is in general just a complex number. For instance, a simple spin-1/2 Heisenberg
bond Si · Sj does not fulfill the non-branching condition in Eq. (2.1.49) but it can be
rewritten as a sum of a spin exchange bond 1

2

(
S+
i S
−
j + S−i S

+
j

)
and an Ising bond Szi S

z
j

which do indeed fulfill the condition Eq. (2.1.49) individually. Applying a non-branching
bond on a representative does in general not yield another representative. Put differently,
the state |τ 〉 in

|τ 〉 = Hk |σ̃〉 (2.1.50)

is not necessarily minimal in Orbit(|τ 〉). If gτ is the element of the symmetry group that
transforms |τ 〉 to its representative |τ̃ 〉, i.e.

|τ̃ 〉 = gτ |τ 〉 , (2.1.51)

then the matrix element Eq. (2.1.45) is given by

〈τ̃ ρ|Hk|σ̃ρ〉 = χρ(gτ )Nρ,τ

Nρ,σ
〈τ |Hk|σ̃〉 . (2.1.52)
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The right hand side of Eq. (2.1.52) contains the matrix elements in the unsymmetrized
basis, the character χρ(gτ ) of the representation labeled by ρ evaluated at gτ and the
normalization constants Nρ,τ and Nρ,σ. Once a complete set of representatives is known,
the Hamiltonian matrix in the symmetrized basis can be constructed via Eq. (2.1.52). If
the original Hamiltonian is sparse, also the Hamiltonian in the symmetrized basis is sparse
and a Lanczos algorithm can be applied for diagonalization.

2.2. Variational Monte Carlo

According to science history [123], Stanislav Ulam invented the idea of Monte Carlo simu-
lations while playing the card game Solitaire. Since computing the winning probability is
much more interesting than actually playing the game, Ulam came up with an inventive
idea to compute this probability. Instead of working out all possible permutations and
ways of playing the cards a pretty good guess of the winning probability can be attained
by simply playing several times and counting the number of wins. More generally, in case
we want to compute a stochastic expectation value of the form

〈f〉 =
∑
x

f(x)p(x), (2.2.1)

of a function f(x) with respect to the probability measure p(x). Instead of summing over
all microscopic configurations x we could compute the mean value,

〈f〉 = 1
n

n∑
i=1

f(Xi), (2.2.2)

of n microscopic configurations Xi, which are chosen randomly according to the probability
distribution p(x). This yields an estimator 〈f〉 for the true value 〈f〉, according to the law
of large numbers. In case the samples Xi are independently distributed an unbiased error
estimator is given by

σ2
f = 1

n− 1

n∑
i=1

(
f(Xi)− 〈f〉

)2
. (2.2.3)

A refined method of stochastically estimating an expectation value Eq. (2.2.1) is given
by the Markov Chain Monte Carlo method, which we briefly review in section 2.2.1.
Expectation values of the form

〈O〉 = 〈ψ|O|ψ〉
〈ψ|ψ〉

, (2.2.4)

can be written as a stochastic expectation value as in Eq. (2.2.1). This way, physical prop-
erties of variational wave functions |ψ〉 can be evaluated in a computationally efficient way.
We will discuss this Variational Monte Carlo, short VMC, method in section 2.2.2. For
applying the VMC method we need to compute coefficients of variational wave functions
in a given basis. The coefficients of Gutzwiller projected wave functions in the local Sz
basis are presented in section 2.2.3.
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2.2.1. Markov Chain Monte Carlo

Here, we summarize the basic principles of Markov Chain Monte Carlo methods, short
MCMC. For a detailed exposition see e.g. Ref. [124]. The basic idea of MCMC methods is
to construct a Markov Chain (Xi)∞i=1 with equilibrium distribution p(x). The stochastic
average Eq. (2.2.1) is then approximated by the estimator

〈f〉 = 1
n

n∑
i=1

f(Xi), (2.2.5)

where Xi are now samples from the evolution of the Markov chain (Xi)∞i=1. The samples
Xi in the estimator Eq. (2.2.5) are taken once the distribution of the Markov samples Xi

has converged to the equilibrium distribution p(x). The balance condition,∑
y

p(x)T (x→ y) =
∑
y

p(y)T (y → x), (2.2.6)

together with the ergodicity of the Markov chain are necessary and sufficient conditions for
the transition kernel T (x→ y) to yield p(x) as the equilibrium distribution. Each solution
to this equation yields a Markov chain suitable for computing the estimator Eq. (2.2.5).
The most popular transition kernel fulfilling this condition is the Metropolis kernel [125],

T (x→ y) = G(x→ y)A(x→ y), (2.2.7)

where G(x→ y) is called the proposal distribution and

A(x→ y) = min
(

1, p(y)
p(x)

G(y → x)
G(x→ y)

)
(2.2.8)

is called the acceptance rate. G(x → y) encodes the strategy for choosing updates and
A(x→ y) defines a probability, whether or not a proposed update is accepted. This kernel
additionally fulfills the more restrictive detailed balance condition,

p(x)T (x→ y) = p(y)T (y → x), (2.2.9)

for all microscopic x and y. Although this condition is sufficient to ensure convergence
to the equilibrium distribution, it is not a necessary condition. Transition kernels not
fulfilling the detailed balance condition have also been proposed [126] and can be used for
minimizing rejection rates. Since subsequent values Xi of a Markov chain are in general
not independent, the estimator σ2

f in Eq. (2.2.3) cannot be used to estimate the error of
the mean value in Eq. (2.2.2). The correct general error estimator is given by

σ2
f,dep = σ2

f (1 + 2τf ) = 1
n− 1

[
n∑
i=1

(
f(Xi)− 〈f〉

)2
]

(1 + 2τf ), (2.2.10)
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where the autocorrelation time τf of the quantity f is given by

τf ≡
1

〈f2〉 − 〈f〉2
∞∑
t=1

(
〈f1f1+t〉 − 〈f〉2

)
. (2.2.11)

Hence, in order to estimate the true error Eq. (2.2.10) one can either directly estimate the
autocorrelation time [127] or use so-called binning analysis.

Binning analysis

We collect the measurements Xi into nB bins of size B such that nB · B = n, where n is
the total number of measurements. In each bin, we compute the bin average

f
(B)
k = 1

B

k(B+1)∑
i=kB

f(Xi). (2.2.12)

In terms of these bin averages the mean estimator Eq. (2.2.2) can be written as

〈f〉 = 1
nB

nB∑
k=1

f
(B)
k . (2.2.13)

The main point of binning analysis is to define new error estimators,

σ2
f,B = 1

nB − 1

nB∑
k=1

(
f

(B)
k − 〈f〉

)2
, (2.2.14)

that converge to the generic error estimator Eq. (2.2.10),

σ2
f,dep = lim

B→∞
σ2
f,B. (2.2.15)

Convergence is reached for bin sizes B � τf . Thus, one typically investigates the evolution
of the error estimator σ2

f,B for increasing B, as shown exemplarily in Fig. 2.3. The binning
analysis can also be performed by only storing O(logn) mesurements [128].

2.2.2. Stochastic sampling of quantum wave functions

Evaluating physical quantities of a pure quantum state |ψ〉 amounts to computing expec-
tation values of the form

〈O〉 = 〈ψ|O|ψ〉
〈ψ|ψ〉

. (2.2.16)

Once the coefficients 〈x|ψ〉 of the wave function |ψ〉 are known in a certain basis |x〉 of the
Hilbert space, Eq. (2.2.16) can in principle be evaluated exactly by computing

〈O〉 = 1
N
∑
x,y

〈ψ|x〉 〈x|O|y〉 〈y|ψ〉 , (2.2.17)
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Figure 2.3.: Typical error estimator σ2
f,B

of a MCMC simulation
for increasing bin size B.
The error estimator finally
reaches a plateau approxi-
mating the true error esti-
mator σ2

f,dep.
bin size

where
N =

∑
x

|〈x|ψ〉|2 . (2.2.18)

The computational effort scales with the dimension of the Hilbert space. Consequently,
these calculations become infeasible for large system sizes. This limitation can be overcome
by rewriting Eq. (2.2.17) to a form that allows for stochastic Monte Carlo sampling,

〈O〉 = 1
N
∑
x,y

〈ψ|x〉 〈x|O|y〉 〈y|ψ〉 = (2.2.19)

=
∑
y

(∑
x

〈ψ|x〉
〈ψ|y〉

〈x|O|y〉
)
|〈y|ψ〉|2 /N (2.2.20)

≡
∑
y

f(y)p(y). (2.2.21)

Eq. (2.2.21) now corresponds to a stochastic expectation value of the function

f(y) =
∑
x

〈ψ|x〉
〈ψ|y〉

〈x|O|y〉 , (2.2.22)

with respect to the probability measure

p(y) = |〈y|ψ〉|2 /N . (2.2.23)

This can now be evaluated by the Metropolis Monte Carlo algorithm as presented in
section 2.2.1. When using the Metropolis transition kernel, only ratios 〈x|ψ〉/〈y|ψ〉 of the
coefficients are needed to evaluate Eq. (2.2.21). Sometimes, these ratios can be computed
more efficiently than the coefficients 〈x|ψ〉 itself, as is the case for Gutzwiller projected
wave functions.

2.2.3. Coefficients of Gutzwiller projected wave functions

Gutzwiller projected wave functions, short GPWF, are correlated many electron states.
They were introduced by Martin Gutzwiller [103, 129] as variational wave functions for
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Hubbard models appearing in the study of high-temperature superconductivity. We al-
ready discussed them in section 1.2.2 and section 1.2.3 in the context of the parton con-
struction of spin liquids. Here, we want to discuss how to compute coefficients of these
wave functions and how to perform quick Monte Carlo updates via evaluating only ratios
of coefficients.

The Gutzwiller projection operator is given by [103, 104]

PGW =
∏
i

(1− ni↑ni↓) , (2.2.24)

where niσ = c†iσciσ for fermionic creation and annihilation operators c†iσ and ciσ, σ =↑↓. It
sets the part of a many-body wave function with double site occupancy to zero. This can
be thought of as enforcing a hard-core constraint on a fermionic wave function. A GPWF
is now given by applying this projector to an uncorrelated product state wave function

|ψGPWF〉 = PGW |ψ0〉 . (2.2.25)

|ψ0〉 can be chosen as the ground state of the parton mean-field Hamiltonian in Eq. (1.2.27).
For simplicity, we consider a simple tight binding parton ansatz without pairing terms,

H =
∑
i,j
σ

tijc
†
iσcjσ + H.c., (2.2.26)

which can be diagonalized

a†iσ =
∑
j

uijc
†
jσ (2.2.27)

H =
∑
iσ

εia
†
iσaiσ, (2.2.28)

where (ui)j denotes the i-th eigenvector of the hopping matrix (tij) with eigenvalue εi. Its
many-body ground state is given by

|ψ0〉 =
∏

εi<EF
σ

a†iσ |0〉 , (2.2.29)

where energy levels are filled up to the Fermi energy EF . To investigate GPWFs [103,
129] numerically, we have to work out their coefficients in a computational basis. We are
interested in the coefficients of this wave function at half filling, i.e.

Nup = Ndown = N/2. (2.2.30)
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In this case, the coefficients of the ground state wave functions are explicitly given by the
following N ×N Slater determinant,

〈σ1σ2 . . . σN |ψ0〉 = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w↑1(1, σ1) w↑1(2, σ2) · · · w↑1(N, σN )
w↑2(1, σ1) w↑2(2, σ2) · · · w↑2(N, σN )

...
...

w↑N/2(1, σ1) w↑N/2(2, σ2) · · · w↑N/2(N, σN )
w↓1(1, σ1) w↓1(2, σ2) · · · w↓1(N, σN )
w↓2(1, σ1) w↓2(2, σ2) · · · w↓2(N, σN )

...
...

w↓N/2(1, σ1) w↓N/2(2, σ2) · · · w↓N/2(N, σN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2.2.31)

where

w↑k(i, σi) =

(uk)i if σi =↑
0 if σi =↓

and w↓k(i, σi) =

0 if σi =↑
(uk)i if σi =↓

. (2.2.32)

The coefficients of more general GPWFs with pairing terms as in the general case in
Eq. (1.2.27) can also be written in terms of Slater determinants, see e.g. [130].

The computational cost of evaluating the determinant in Eq. (2.2.31) is of the order
O(N3). In a typical Monte Carlo simulation, many of these coefficients have to be evalu-
ated which becomes the bottleneck of the computation. A clever method to speed up these
computations was proposed in [47]. The key observation is that in the Metropolis Monte
Carlo sampling only ratios of coefficients have to be calculated. If two matrices differ only
by one column the ratio of the determinants can be evaluated with O(N) operations if
the inverse matrices are known. If an update is accepted, the inverse matrix has to be
recomputed. This can also be done more efficiently with O(N2) operations if the inverse
of a matrix with only one different column is known. For details on this update procedure
see [47].
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3
Symmetries and Parallelization for Large-Scale Exact

Diagonalization

Computer, tea, Earl Grey, hot.

Jean-Luc Picard

Abstract

We present novel algorithms for fast and memory-efficient use of discrete symmetries in Ex-
act Diagonalization computations of quantum many-body systems. These techniques allow
us to work flexibly in the reduced basis of symmetry-adapted wave functions. Moreover,
a parallelization scheme for the Hamiltonian-vector multiplication in the Lanczos proce-
dure for distributed memory machines avoiding load balancing problems is proposed. We
show that using these methods systems of up to 50 spin-1/2 particles can be successfully
diagonalized.

3.1. Introduction

Exact Diagonalization, short ED, studies have in the past been a reliable source of numeri-
cal insight into various problems in quantum many-body physics. The method is versatile,
unbiased and capable of simulating systems with a sign problem. The main limitation of
ED is the typical exponential scaling of computational effort and memory requirements in
the system size. Nevertheless, the number of particles feasible for simulation has steadily
increased since the early beginnings [14, 131, 132]. Not only does increasing the number of
particles yield better approximations to the thermodynamic limit, but also several inter-
esting simulation clusters with many symmetries become available if more particles can be
simulated. Having access to such clusters becomes important if several competing phases
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3. Large-Scale Exact Diagonalization

ought to be realized on the same finite size sample. In this work, we present algorithms
and strategies for the implementation of a state-of-the-art large-scale ED code and prove
that applying these methods systems of up to 50 spin-1/2 particles can be simulated on
present day supercomputers. There are two key ingredients making these computations
possible:

1. Efficient use of symmetries. In section 3.2 we present algorithms to work with
symmetry-adapted wave functions in a fast and memory efficient way. These so-
called sublattice coding techniques allow us to diagonalize the Hamiltonian in every
irreducible representation of a discrete symmetry group. The basic idea behind these
algorithms goes back to H.Q. Lin [131].

2. Parallelization of the matrix-vector multiplications in the Lanczos algorithm
for distributed memory machines. We propose a method avoiding load-balancing
problems in message-passing and present a computationally fast way of storing the
Hilbert space basis in section 3.3.

These ideas have been implemented and tested on various supercomputers. We present
results and benchmarks of our implementation in section 3.4.

We refer the reader to section 2.1 for a basic introduction to the ED method. The
Lanczos method is reviewed in section 2.1.2 and symmetry-adapted wave functions are
discussed in section 2.1.3. In this chapter, we also only consider one-dimensional repre-
sentations of the symmetry group. We recall some important notions. Consider a generic
spin configuration on N lattice sites with local dimension d,

|σ〉 = |σ1, . . . , σN 〉 , σi ∈ {1, . . . , d}. (3.1.1)

The symmetry-adapted basis states |σρ〉 are defined as (cf. Eq. (2.1.34))

|σρ〉 ≡ 1
Nρ,σ

∑
g∈G

χρ(g)∗g |σ〉 , (3.1.2)

where G denotes a discrete symmetry group, ρ a one-dimensional representation of this
group, χρ(g) the character of this representation evaluated at group element g, and Nρ,σ

denotes the normalization constant of the state |σρ〉. The set of basis state spin configu-
rations |σ〉 is divided into orbits (cf. Eq. (2.1.46)),

Orbit(|σ〉) = {g |σ〉 |g ∈ G}. (3.1.3)

The representative |σ̃〉 within each orbit is given by as the element with smallest integer
value coding (cf. Eq. (2.1.47)),

|σ̃〉 = gσ |σ〉 , where gσ = argmin
g∈G

int(g |σ〉). (3.1.4)
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The matrix element 〈τ̃ ρ|Hk|σ̃ρ〉 for non-branching terms Hk for two symmetry-adapted
basis states with representation ρ is given by (cf. Eq. (2.1.52))

〈τ̃ ρ|Hk|σ̃ρ〉 = χρ(gτ )Nρ,τ

Nρ,σ
〈τ |Hk|σ̃〉 . (3.1.5)

In the following we define

|σ〉 < |τ 〉 :⇔ int(|σ〉) < int(|τ 〉). (3.1.6)

3.2. Sublattice Coding techniques

Evaluating the matrix elements 〈τ̃ ρ|Hk|σ̃ρ〉 in Eq. (3.1.5) for all basis states |σ̃ρ〉 and
|τ̃ ρ〉 efficiently is the gist of employing symmetries in ED computations. In an actual
implementation on the computer we need to perform the following steps:

• Apply the non-branching term Hk on the representative state |σ̃〉. This yields a pos-
sibly non-representative state |τ 〉. From this, we can compute the factor 〈τ |Hk|σ̃〉.

• Find the representative |τ̃ 〉 of |τ 〉 and determine the group element gτ such that
|τ̃ 〉 = gτ |τ 〉. This yields the factor χρ(gτ ).

• Know the normalization constants Nρ,σ and Nρ,σ. These are usually computed when
creating a list of all representatives and stored in a separate list.

The problem of finding the representative |σ̃〉 of a given state |σ〉 and its corresponding
symmetry gσ turns out to be the computational bottleneck of ED in a symmetrized ba-
sis. It is thus desirable to solve this problem fast and memory efficient. There are two
straightforward approaches to solving this problem:

• Apply all symmetries directly to |τ 〉 to find the minimizing group element gτ ,

gτ = argmin
g∈G

int(g |τ 〉). (3.2.1)

This method does not have any memory overhead but is computationally slow since
all symmetries have to be applied to the given state |τ 〉.

• For every state |σ〉 we store |σ̃〉 and gσ in a lookup table. While this is very fast
computationally, the lookup table for storing all representatives grows exponentially
in the system size.

The key to solving the representative search problem adequately is to have an algorithm
that is almost as fast as a lookup table, where memory requirements are within reasonable
bounds. This problem has already been addressed by several authors [131, 132]. The
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central idea in these so-called sublattice coding techniques is to have a lookup table for
the representatives on a sublattice of the original lattice and combine the information of
the sublattice representatives to compute the total representative. These ideas were first
introduced in [131–133]. In the following paragraphs, we explain the basic idea behind
these algorithms and propose a flexible extension to arbitrary geometries and number of
sublattices.

Sublattice coding on two sublattices

For demonstration purposes, we consider a simple translationally invariant spin-1/2 system
on a six-site chain lattice with periodic boundary conditions. The lattice is divided into
two sublattices as in Fig. 3.1. The even sites form the sublattice A and the odd sites form
the sublattice B. We enumerate the sites such that the sites 1 to 3 are in sublattice A and
the sites 4 to 6 are in sublattice B. We choose the integer representation of a state |σ〉
such that the most significant bits are formed by the spins in sublattice A. The symmetry
group we consider consists of the six translations on the chain

G = {Id, T, T2, T3, T4, T5}, (3.2.2)

where Tn denotes the translation by n lattice sites. The splitting of the lattice into two
sublattices is stable in the sense that every symmetry element g ∈ G either maps the A
sublattice to A and the B sublattice to B or the A sublattice to B and the B sublattice to
A. We call this property sublattice stability. It is both a property of the partition of our
lattice into sublattices and the symmetry group. Hence, the symmetry group is composed
of two kinds of symmetries

GA ≡ {g ∈ G ; g maps sublattice A onto A},
GB ≡ {g ∈ G ; g maps sublattice B onto A}.

(3.2.3)

We denote by |σ〉A (resp. |σ〉B) the state restricted to sublattice A (resp. B) and define
the sublattice representatives,

RepA(|σ〉A) ≡ hA |σ〉A , where hA = argmin
g∈GA

int(g |σ〉A),

RepB(|σ〉B) ≡ hB |σ〉B , where hB = argmin
g∈GB

int(g |σ〉B),
(3.2.4)

and the representative symmetries,

SymA(|σ〉A) ≡ {g ∈ GA ; g |σ〉A = RepA(|σ〉A)},
SymB(|σ〉B) ≡ {g ∈ GB ; g |σ〉B = RepB(|σ〉B)}.

(3.2.5)
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Figure 3.1.: Two sublattice coding of the spin state |σ〉 on a six-site chain lattice and action
of translational symmetries. The sites are enumerated such that site 1-3 are
on the blue sublattice A, 4-6 on the red sublattice B. The representative state
with this enumeration of sites is given by |σ̃〉 = T1 |σ〉 = |↓↓↑↑↑↓〉. Notice,
that the symmetries act on real space and thus the transformation of the basis
states also depends on the numbering of sites.

Let again |σ̃〉 = gσ |σ〉, where |σ̃〉 is the representative of |σ〉. The minimizing symmetry
gσ can only be an element of SymA(|σ〉A) if RepA(|σ〉A) ≤ RepB(|σ〉B), or vice versa. Put
differently,

RepB(|σ〉B) < RepA(|σ〉A) ⇒ gσ /∈ SymA(|σ〉A). (3.2.6)

Otherwise, any symmetry element in RepB(|σ〉B) would yield a smaller integer value than
gσ. This is the core idea behind the sublattice coding technique. We store RepA,B(|σ〉A,B)
for every substate |σ〉A,B in a lookup table together with SymA,B(|σ〉A,B). In a first step, we
determine the sublattice representative with smallest most significant bits. Then we apply
the representative symmetries to |σ〉 in order to determine the true representative |σ̃〉.
The number of representative symmetries |SymA,B(|σ〉A,B)| is typically much smaller than
the total number of symmetries |G|. The following example illustrates the idea and shows
how to compute the representative given the information about sublattice representatives
and representative symmetries.

Example We consider the state |σ〉 = |↑↑↓↓↑↓〉 on a six-site chain lattice as in Fig. 3.1 a).
Notice that the sites are not enumerated from left to right but such that sites 1 to 3 belong
to the sublattice A and sites 4 to 6 belong to sublattice B. The states restricted on the
sublattices are |σ〉A = |↑↑↓〉 and |σ〉B = |↓↑↓〉. The action of the sublattice symmetries

GA ≡ {Id, T2, T4},
GB ≡ {T1, T3, T5},

(3.2.7)
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on |σ〉 is shown in Fig. 3.1 b) and c). From this, we compute the sublattice representatives
as in Eq. (3.2.4),

RepA(|σ〉A) = |↓↑↑〉 ,
RepB(|σ〉B) = |↓↓↑〉 ,

(3.2.8)

whose integer values are given by

int(RepA(|σ〉A)) = (011)2 = 3,
int(RepB(|σ〉B)) = (001)2 = 1.

(3.2.9)

Since RepB(|σ〉B) < RepA(|σ〉A) the symmetry gσ yielding the total representative |σ̃〉
must be contained in

SymB(|σ〉B) = {T1}, (3.2.10)

which in this case just contains a single element, namely T1. Consequently, the represen-
tative |σ̃〉 is given by

|σ̃〉 = T1 |σ〉 = |↓↓↑↑↑↓〉 . (3.2.11)

Lookup tables If the quantities RepA,B(|σ〉A,B) and SymA,B(|σ〉A,B) are now stored in
a lookup table, this computation can be done very efficiently. Notice that instead of
having to store 2N entries in the lookup table for the representative we only need four
lookup tables of order O(2N/2). On larger system sizes the difference between memory
requirements of order O(2N ) and O(2N/2) is substantial.

To further speed up computations we also create lookup tables to store the action of
each symmetry g ∈ G on a substate |σ〉A,

SymmetryActionA(g, |σ〉A) = g |σ〉A ,
SymmetryActionB(g, |σ〉B) = g |σ〉B .

(3.2.12)

With this information, we can efficiently apply symmetries to a given spin configuration
by looking up the action of g on the respective substate and combining the results. The
memory requirement for these lookup tables is O(Nsym2N/2), where Nsym = |G|. This can
be reduced by generalizing the sublattice coding algorithm to multiple sublattices. The
memory requirement then scales as O(Nsym2N/Nsublat), where Nsublat denotes the number
of sublattices.

Generic sublattice coding algorithm

We start by discussing how we subdivide a lattice Λ into Nsublat sublattices. The basic
requirement is that every symmetry group element either only operates within the sub-
lattices or exchanges sublattices. We do not allow for symmetry elements that split up a
sublattice onto different sublattices. Therefore we make the following definition:
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(a) Two sublattice ordering in
a honeycomb lattice.

(b) Three sublattice ordering
on a kagome lattice.

(c) Three sublattice ordering
on a square lattice.

Figure 3.2.: Sublattice orderings for several common lattices. In figures Fig. 3.2a and
Fig. 3.2b the sublattices are stable with respect to all spatial symmetries.
In figure Fig. 3.2c the sublattices are stable with respect to all translational
symmetries, horizontal and vertical reflections, 180◦ rotations but not with
respect to 90◦ rotations or diagonal reflections.

Definition (Sublattice stability) A decomposition,

Λ =
Nsublat⋃
·

X=1
ΛX , (3.2.13)

of a lattice Λ with symmetry group G into Nsublat disjoint sublattices ΛX is called sublattice
stable if every g ∈ G maps each ΛX onto exactly one (possibly different) ΛY , i.e. for all
g ∈ G and all ΛX there exists a ΛY such that

g(ΛX) = ΛY .

The set ΛX is called the X-sublattice of Λ.

The notion of sublattice stability is illustrated in Fig. 3.2. The sublattices ΛX are drawn
in different colors. A translation by one unit cell in Fig. 3.2a keeps the sublattices of
the honeycomb lattice invariant whereas a 60◦ rotation exchanges the sublattices. For
the kagome lattice in Fig. 3.2b a 60◦ rotation around a hexagon center for example cycli-
cally permutes the three sublattices. One checks that for both Figs. 3.2a and 3.2b all
translational as well as all point group symmetries are sublattice stable, so different color
sublattices are mapped onto each other. This is different for Fig. 3.2c. Still here all trans-
lational symmetries just permute the sublattices, but a 90◦ rotation splits up a sublattice
into different sublattices. Nevertheless, a 180◦ rotation keeps the sublattices stable, simi-
larly a vertical or horizontal reflection. Therefore, only the reduced point group D2 instead
of the full D4 point group for the square lattice fulfills the sublattice stability condition in
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this case. D2 and D4 denote the dihedral groups of order 4 and 8 with two- and four-fold
rotations and reflections. Note, that for a square lattice a two or four sublattice decom-
position for which the full D4 point group is sublattice stable can be chosen instead. The
choice of sublattice decomposition in Fig. 3.2c just serves illustrational purposes.

From the definition of sublattice stability, it is clear that the total number of sites N
has to be divisible by the number of sublattices Nsublat. The numbering of the lattice sites
is chosen such that the lattice sites from (X − 1)N/Nsublat + 1 to XN/Nsublat belong to
sublattice X. We choose the most significant bits in the integer representation to be the
bits on sublattice 1. Similar as in the previous section we define the following quantities

Definition For every sublattice ΛX we define the following notions:

• sublattice symmetries:

GX ≡ {g ∈ G | g maps sublattice X onto sublattice 1}. (3.2.14)

• sublattice representative:

RepX(|σ〉X) ≡ hX |σ〉X , where hX = argmin
g∈GX

int(g |σ〉X), (3.2.15)

where |σ〉X denotes the substate of |σ〉 restricted on sublattice ΛX .

• representative symmetries:

SymX(|σ〉X) ≡ {g ∈ GX | g |σ〉X = RepX(|σ〉X)}. (3.2.16)

• sublattice symmetry action:

SymmetryActionX(g, |σ〉X) = g |σ〉X . (3.2.17)

The symmetries in GX map the sublattice X onto the most significant bits. Therefore,
the symmetry that minimizes the integer value in the orbit must be contained in the
representative symmetries of a minimal sublattice representative, i.e.

gσ = argmin
g∈G

g |σ〉 ⇒ gσ ∈
⋃

Y , RepY (|σ〉Y )
minimal

SymY (|σ〉Y ). (3.2.18)

To find the minimizing symmetry gσ, we only have to check the symmetries yielding
the minimal sublattice representative. The quantities RepX(|σ〉X) and SymX(|σ〉X) are
stored in lookup tables, whose size scales as O(2N/Nsublat). In order to quickly apply
the symmetries, we can additionally store SymmetryActionX(g, |σ〉X) in another lookup
table. The memory cost of doing so scales as O(Nsym2N/Nsublat) and thus requires the most
memory. The generic sublattice coding algorithm consists of two parts. The preparation of
the lookup tables is shown as pseudocode in algorithm 3.3. The pseudocode of the actual
algorithm for finding the representative using the lookup tables is shown in algorithm 3.4.
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Algorithm 3.3 Preparation of lookup tables for sublattice coding algorithm
for each substate |σX〉 :

for each sublattice X :
compute the sublattice representative Eq. (3.2.15), store it to RepX(|σ〉X)
compute the representative symmetries Eq. (3.2.16), store them to SymX(|σ〉X)
for each symmetry g ∈ G :

compute g |σ〉X and store it to SymmetryActionX(g, |σ〉X)

Algorithm 3.4 Sublattice coding algorithm for finding the representative.
Input: state |σ〉
Output: representative |σ̃〉 and gσ

Determine MinRep = min
X
{RepX(|σ〉X)}

Set |σ̃〉 = +∞
for each sublattice Y with RepY (|σ〉Y ) = MinRep :

for each symmetry g ∈ SymY (|σ〉Y ) :
compute g |σ〉 by using the lookup tables SymmetryActionX(g, |σ〉X)
if g |σ〉 < |σ̃〉 :
|σ̃〉 ← g |σ〉
gσ ← g

return |σ̃〉, gσ

Example We consider the same state on a six-site chain lattice as in Fig. 3.1, but now
using a three sublattice decomposition in Fig. 3.3. We call the blue sublattice the A

sublattice, the red B and the yellow C. Notice, that due to different sublattice structure
the labeling of the real space sites is different from the two sublattice case. In the three
sublattice case, we are now given the state

|σ〉 = |↑↑↓↓↑↓〉 . (3.2.19)

Its substates are
|σ〉A = |↑↑〉 , |σ〉B = |↓↓〉 , |σ〉C = |↑↓〉 , (3.2.20)

with corresponding sublattice representatives

RepA(|σ〉A) = |↑↑〉 , RepB(|σ〉B) = |↓↓〉 , RepC(|σ〉C) = |↓↑〉 , (3.2.21)

and representative symmetries

SymA(|σ〉A) = {I, T3}, SymB(|σ〉B) = {T2, T5}, SymC(|σ〉C) = {T1}. (3.2.22)

The minimal sublattice representative MinRep as in algorithm 3.4 is given by

MinRep = RepB(|σ〉B) = |↓↓〉 . (3.2.23)
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Figure 3.3.: Three sublattice coding of the spin state |σ〉 on a six-site chain lattice and
action of translation symmetries. The sites are enumerated such that site 1
and 2 are on sublattice A, 3,4 on B and 5,6 on C. The representative state
with this enumeration of sites is given by |σ̃〉 = T2 |σ〉 = |↓↓↓↑↑↑〉

The minimizing symmetry must now be in SymB(|σ〉B) = {T2, T5}. We see that

T2 |σ〉 = |↓↓↓↑↑↑〉 < T5 |σ〉 = |↓↓↑↓↑↑〉 . (3.2.24)

Therefore, the representative |σ̃〉 is given by

|σ̃〉 = |↓↓↓↑↑↑〉 , (3.2.25)

with the minimizing symmetry gσ = T2. Notice, that this state differs from the one
found in the two sublattice example since the labeling of the sites changes the integer
representation of a state and thus the definition of the representative. Once a given
labeling of sites is fixed the representative is of course unique.

3.3. Distributed and hybrid memory parallelization

For reaching larger system sizes in ED computations a proper balance between memory
requirements and computational costs has to be found. There are two major approaches
when applying the Lanczos algorithm. The Hamiltonian matrix can either be stored in
memory in some sparse-matrix format or generated on-the-fly every time a matrix-vector
multiplication is performed. Storing the matrix is usually faster, yet memory requirements
are higher. This approach is for example pursued by the software package SPINPACK [134].
A matrix-free implementation of the Lanczos algorithm usually needs more computational
time since the matrix generation, especially in a symmetrized basis can be expensive.
Of course, the memory cost is drastically reduced since only a few vectors of the size
of the Hilbert space have to be stored. It turns out that on current supercomputing
infrastructures the main limitation in going to larger system sizes is indeed the memory
requirements of the computation. It is thus often favorable to use a slower matrix-free

64



3.3. Distributed and hybrid memory parallelization

implementation, as done by the software package HΦ [135], for example. Due to this
reasons, we also choose the matrix-free approach.

The most computational time in the Lanczos algorithm is used in the matrix-vector
multiplication. The remaining types of operations are scalar multiplications, dot products
of Lanczos vectors or the diagonalization of the T -matrix which are usually of negligi-
ble computational cost. Today’s largest supercomputers are typically distributed memory
machines, where every process only has direct access to a small part of the total memory.
It is thus a nontrivial task to distribute data onto several processes and implement com-
munication amongst them once remote memory has to be accessed. Also, when scaling
the software to a larger amount of processes load balancing becomes important. The com-
putational work should be evenly distributed amongst the individual processes in order to
avoid waiting times in communication. In the following, we explain how we achieve this
goal in our implementation using the Message Passing Protocol (MPI) [136].

Matrix-vector multiplication The Hamiltonian can be written a sum of non-branching
terms,

H =
∑
k

Hk, (3.3.1)

as in Eq. (2.1.49). To perform the full matrix-vector multiplication we compute the matrix-
vector multiplication for the non-branching terms Hk and add up the results,

H |ψ〉 =
∑
k

Hk |ψ〉 . (3.3.2)

We denote by
{|σi〉}, i = 1, . . . , D , (3.3.3)

a (possibly symmetry-adapted) basis of the Hilbert space. A wave function |ψ〉 is repre-
sented on the computer by storing its coefficients 〈σi|ψ〉. Given an input vector,

|ψin〉 =
D∑
i=1
〈σi|ψin〉 |σi〉 , (3.3.4)

we want to compute the coefficients 〈σi|ψout〉 in

Hk |ψin〉 = |ψout〉 . (3.3.5)

The resulting output vector |ψout〉 is given by

|ψout〉 =
D∑
i=1
〈σi|ψout〉 |σi〉 =

D∑
i=1
〈σi|Hk|ψin〉 |σi〉

=
D∑

i,j=1
ck(σj) 〈σj |ψin〉 〈σi|σ′j〉 |σi〉 ,

(3.3.6)
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where ck(σj) and |σ′j〉 are given by

Hk |σj〉 = ck(σj) |σ′j〉 . (3.3.7)

Notice, that in a symmetry-adapted basis, evaluating ck(σj) requires the evaluation of
Eq. (3.1.5), where the sublattice coding technique of section 3.2 can be applied. Clearly,
we have

〈σi|σ′j〉 =

1 if |σi〉 = |σ′j〉 ,
0 else.

(3.3.8)

For parallelizing the multiplication Eq. (3.3.6), we distribute the coefficients in the basis
{|σi〉} onto the different MPI processes. This means we have a mapping,

proc : |σi〉 → {1, . . . , nprocs}, (3.3.9)

that assigns to every basis state of the Hilbert space its MPI process number. Here, nprocs
denotes the number of MPI processes. In general, |σj〉 and |σ′j〉 are not stored in the
same process. Hence, the coefficient ck(σj) 〈σj |ψin〉 has to be sent from the process no.
proc(|σj〉) to process no. proc(|σ′j〉). This makes communication between the processes
necessary. This communication is buffered in our implementation, i.e. for every basis
state |σj〉 we first store the target basis state |σ′j〉 and the coefficient ck(σj) 〈σj |ψin〉 lo-
cally. Once every local basis state has been evaluated, we perform the communication and
exchange the information amongst all processes. This corresponds to an MPI Alltoallv
call in the MPI standard.

After this communication step, every process has to add the received coefficient to the
locally stored coefficient 〈σ′j |ψout〉. For this, we have to search, where the now locally
stored coefficient of the basis state |σ′j〉 is located in memory. Typically, we keep a list
of all locally stored basis states defining the position of the coefficients. This list is then
searched for the entry |σ′j〉, which can also be time-consuming and needs to be done
efficiently. We are thus facing the following challenges when distributing the basis states
of the Hilbert space amongst the MPI processes:

• Every process has to know which process any basis state |σi〉 belongs to.

• The storage of the information about the distribution should be memory efficient.

• The distribution of basis states has to be fair, in the sense that every process has a
comparable workload in every matrix-vector multiplication.

• The search for a basis state within a process should be done efficiently.

We will now propose a method to address these issues in a satisfactory way.

66



3.3. Distributed and hybrid memory parallelization

(not stored)

...

...

...+

...+

prefix postfix+

Figure 3.4.: Storage layout of the distributed Hilbert space. The prefixes are randomly
distributed amongst the MPI processes using a hash function. States with
same prefixes are mapped to the same process. Within a process, the states
are ordered lexicographically. The Hamiltonian matrix is not stored.

Distribution of basis states The central point of our parallelization strategy is the proper
choice of the distribution function proc(σ) for the basis states in Eq. (3.3.9). We split up
every basis state into prefix and postfix sites,

|σ〉 = |σ1 · · ·σnprefix︸ ︷︷ ︸
prefix sites

σnprefix+1 · · ·σnprefix+npostfix︸ ︷︷ ︸
postfix sites

〉 , (3.3.10)

where nprefix and npostfix denote the number of prefix and postfix sites. We decide that
states with the same prefix are stored in the same MPI process. The prefixes are ran-
domly distributed amongst all the processes. We do this by using a hash function that
maps the prefix bits onto a random but deterministic MPI process. This hash function
can be chosen such that every process has a comparable amount of states stored locally.
Moreover, a random distribution of states reduces load balance problems significantly since
the communication structure is randomized. This is in stark contrast to distributing the
basis states in a linear fashion. Thereby, single processes can often have a multiple of the
workload than other processes, thus causing idle time in other processes.

By choosing this kind of random distribution of basis states, we also don’t have to store
any information about their distribution. This information is all encoded in the hash
function. Nevertheless, we store the basis states belonging to a process locally in an array.
Finding the index of a given basis state also requires some computational effort. Here, we
use the separation between prefix and postfix sites. We store the basis states in an ordered

67



3. Large-Scale Exact Diagonalization

Algorithm 3.5 Preparation of the distributed and symmetrized Hilbert space
Perform the following steps on every process in parallel (no communication necessary)
myid denotes the number of the current MPI process
prepares data structures Basis, Limits on each process

for each prefix spin configuration |σprefix〉 = |σ1 · · ·σnprefix〉 :
if proc(|σprefix〉) 6= myid :

continue
else:

begin = length(Basis)
for each spin configuration |σ〉 with prefix |σprefix〉 :

compute representative |σ̃〉 of |σ〉
if |σ〉 = |σ̃〉 :

append |σ〉 to Basis
end = length(Basis)
if end 6= begin :

insert (|σprefix〉, begin, end) to Limits

Algorithm 3.6 Parallel matrix-vector multiply for a non-branching term Hk

Input: input wave function |ψin〉
Output: matrix-vector product |ψout〉 = Hk |ψin〉

B Preparation and sending step (communication may be buffered)
for each basis state |σj〉 stored locally in Basis :
· apply non-branching term Hk and apply sublattice coding technique
to compute ck(σj) and |σ′j〉,

Hk |σj〉 = ck(σj) |σ′j〉 .

· compute c = ck(σj) 〈σj |ψin〉
· send the pair (|σ′j〉 , c) to process no. proc(|σ′j〉)

B Receiving and search step
for each pair (|σ′j〉 , c) received :
· determine indices (begin, end) from Limits(|σ′j〉)
· determine index i of |σ′〉 by binary search in array
Basis between (begin, end)
· Set 〈σ′j |ψout〉 [i]← c
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way. This way, states belonging to the same prefix are aligned in memory as shown in
Fig. 3.4. We can store the index of the first and the last states that belong to a given
prefix. To find the index of a given state we can now lookup the first and last index of the
prefix of this state and perform a binary search for the state between these two indices.
This reduces the length of the array we have to perform the binary search on and, hence,
reduces the computational effort in finding the index. For implementing this procedure
we need two data structures locally stored on each process.

1. An array Basis(i) storing all the basis states,

Basis(i) = |σi〉 , i = 1, . . . , D. (3.3.11)

2. An associative array Limits(|σprefix〉) storing the map

Limits(|σprefix〉) = [begin(|σprefix〉), end(|σprefix〉)] (3.3.12)

where begin(|σprefix〉) denotes the index of the first state with prefix |σprefix〉 and
end(|σprefix〉) denotes the index of the last state with this prefix in the array Basis(i),
|σprefix〉 = |σ1 · · ·σnprefix〉.

In algorithm 3.5 we summarize how to prepare these data structures. The parallel matrix-
vector multiplication in pseudocode is shown in algorithm 3.6. When working in the
symmetry-adapted basis, the lookup tables of the sublattice coding method need to be
accessible to every MPI process. One way to achieve this is of course, that every process
generates its own lookup tables. However, in present-day supercomputers, several pro-
cesses will be assigned to the same physical machine sharing the same physical memory.
To save memory, the lookup tables are stored only once on a computing node. Its pro-
cesses can then access the lookup tables via shared memory access. In our code, we use
POSIX shared memory functions [137] to implement this hybrid parallelization.

3.4. Benchmarks

In order to assess the power of the methods proposed in the previous sections, we per-
formed test runs to compute ground state energies. We considered the Heisenberg antifer-
romagnetic spin-1/2 nearest neighbor model on four different lattice geometries: square
(48 sites), triangular (48 sites), kagome (48 sites) and square (50 sites). Fig. 3.5 shows the
simulation clusters and the sublattice structure we used. The benchmarks were performed
on three different supercomputers. The Vienna Scientific Cluster VSC3 is built up from
over 2020 nodes with two Intel Xeon E5-2650v2, 2.6 GHz, 8 core processors, the supercom-
puter Hydra at the Max Planck Supercomputing & Data Facility in Garching with over
3500 nodes with 20 core Intel Ivy Bridge 2.8 GHz processors and the System B Sekirei
at the Institute for Solid State Physics of the University of Tokyo with over 1584 nodes
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(a) Triangular lattice, 48 sites,
Four sublattice structure.

(b) Square lattice, 48 sites,
Four sublattice structure.

(c) Kagome lattice, 48 sites,
Three sublattice structure.

(d) Square lattice, 50 sites,
Five sublattice structure.

Figure 3.5.: Geometries of Heisenberg spin-1/2 model benchmarks. Different colors show
the sublattice structure used for the sublattice coding technique. Grey back-
ground shows the Wigner-Seitz cell defining the periodicity of the lattice.

with two Intel Xeon E5-2680v3 12 core 2.5GHz processors. Both the Hydra and Sekirei
use InfiniBand FDR interconnect, whereas the VSC3 uses Intel TrueScale Infiniband for
network communication.

The benchmarks are summarized in table 3.1. We make use of all translational, certain
point group symmetries and spin-flip symmetry. We show the memory occupied by a
single lookup table for the symmetries. Since we use a single buffered and blocking all-to-
all communication in the implementation it is straightforward to measure the percentage of
time spent for MPI communication by taking the time before the communication call and
afterward. In order to validate the results of our computation, we compared the results
of the unfrustrated square case to Quantum Monte Carlo computations of the ground
state energy. We used a continuous time world-line Monte Carlo Code [138] with 105

thermalization and 106 measurements at temperature T = 0.01. The computed energies
per site are E/N = −0.676013 ± 2 · 10−5 for the 48 site square cluster and E/N =
−0.67512±2 ·10−5 for the 50 site cluster. The actual values computed with ED are within
the error bars. The ground state energy of the kagome Heisenberg antiferromagnet on
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Geometry Triangular 48 Square 48 Kagome 48 Square 50
computer Sekirei VSC3 Hydra Sekirei

point group D6 D2 D6 D2
# symmetries 1152 384 384 400

dimension 2.8 · 1010 8.3 · 1010 8.4 · 1010 3.2 · 1011

# cores 3456 8192 10240 3456
total memory 2.5 TB n.A. n.A. 15.5 TB

memory lookup 151 MB 50 MB 604 MB 17 MB
Time / MVM 399 s 1241 s 258 s 3304 s
% comm. time 39% 77% 48% 39%

g.s. sector Γ.A1.even Γ.A1.even Γ.A1.even M.A1.odd
g.s. energy -26.8129452715 -32.4473598728 -21.0577870635 -33.7551019315

Table 3.1.: Benchmark results for various problems on three different supercomputer sys-
tems described in the main text. The employed symmetries include transla-
tional, point group and spinflip symmetry. We show the total memory used by
all MPI processes and the memory used by the lookup tables for the sublattice
coding technique. We also show the amount of time spent for communication.

48 sites has been previously computed [139] with a specialized code and agrees with our
results. We see that the amount of time spent for communication is different for the three
supercomputers. On Sekirei, a parallel efficiency of 61% on 3456 cores has been achieved.

3.5. Conclusion

We proposed the generic sublattice coding algorithm for making efficient use of discrete
symmetries in large-scale ED computations. The method can be used flexibly on most
lattice geometries and only requires a reasonable amount of memory for storing the lookup
tables. The parallelization strategy for distributed memory architectures we discussed
includes a random distribution of the Hilbert space amongst the parallel processes. Lookup
tables of the sublattice coding technique are stored only once per node and are accessed
via shared memory. Using these techniques, we showed that computations of spin-1/2
models of up to 50 spins have now become feasible.
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Abstract

We investigate the stability and the nature of the chiral spin liquids which were recently
uncovered in extended Heisenberg models on the kagome lattice. Using a Gutzwiller
projected wave function approach – i.e. a parton construction – we obtain large overlaps
with ground states of these extended Heisenberg models. We further suggest that the
appearance of the chiral spin liquid in the time-reversal invariant case is linked to a classical
transition line between two magnetically ordered phases.

4.1. Introduction

The quest for quantum spin liquids [89] is currently a very active endeavour in condensed
matter physics. This elusive state of quantum matter comes in various forms and is theo-
retically intensely studied, however was difficult to pin down in computational studies of
realistic quantum spin Hamiltonians and hard to characterise unambigously in experiments
on quantum magnets.

The S = 1/2 Heisenberg antiferromagnet on the kagome lattice has emerged as one of
the paradigmatic systems where quantum spin liquid phases are expected. A plethora of
theoretical proposals have been put forward, ranging from valence bond crystals [37, 141–
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144], algebraic spin liquids [26–29], Z2 spin liquids [30–36], to chiral spin liquids [37–40].
Despite tremendous theoretical and computational progress [145–157], the true nature of
the ground state and the low-lying excited states of the nearest neighbour Heisenberg
model on the kagome lattice is still not settled completely.

Chiral spin liquids (CSL) are a particular family of spin liquids in which time-reversal
symmetry (TRS) and parity symmetry are (spontaneously or explicitly) broken [23, 108].
The scalar chirality 〈Si · (Sj × Sk)〉 is non-zero and uniform and manifests the breaking
of time-reversal and parity symmetries, analogous to the presence of an orbital magnetic
field. In a favorable situation the breaking of these symmetries could conceivably lead to
a spin analogue of the Fractional Quantum Hall Effect, although other types of ground
states are possible as well [158, 159]. Historically Kalmeyer and Laughlin envisioned such
a scenario by considering lattice versions of the bosonic ν = 1/2 Laughlin wave function
as candidate ground state wave functions for the triangular lattice Heisenberg model [24,
109].

In two recent papers [160, 161], two forms of chiral spin liquids have been discovered,
which are stabilised away from the nearest neighbour Heisenberg model upon adding fur-
ther neighbour Heisenberg interactions or scalar chirality terms to the Hamiltonian. Both
studies numerically demonstrate the required ground state degeneracy and characterize
the underlying topological order by computing the modular matrices. For different models
CSLs have also been found in Refs. [45, 162, 163].

This breakthrough lays the foundation for further investigations of chiral spin liquids.
Several pressing, important questions arise: i) are the two chiral spin liquids phases distinct
or are they related ? ii) is there a simple physical (lattice-based) picture or a variational
wave function that describes the chiral spin liquid ? iii) what is the ”raison d’être” of
these chiral spin liquids, i.e. why are the chiral spin liquids stabilized for the two reported
Hamiltonians ? Can we come up with some guiding principle which will allow to stabilise
CSL on other lattices ? In the following we will address each of these questions. In short
we find that the two chiral spin liquids are indeed connected. We then demonstrate that
appropriate Gutzwiller projected parton wave functions can have large overlaps with the
numerically exact ground states of the studied microscopic models. And finally we show
that one location of the chiral spin liquids in parameter space coincides largely with a
transition line in the phase diagram of the corresponding classical model. The classical
transition line lies between coplanar q = 0 magnetic order and a chiral, non-coplanar
magnetically ordered phase (cuboc1 [38]).
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4.2. Model

We will consider the following Hamiltonian which unifies the two models studied in
Refs. [160, 161]:

H =J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj+

J3
∑
〈〈〈i,j〉〉〉

Si · Sj + Jχ
∑

i,j,k∈4,5
Si · (Sj × Sk).

(4.2.1)

This model includes first, second and third nearest neighbour Heisenberg interactions
with coupling constants J1, J2, J3 as sketched in Fig. 4.1. The third nearest neighbour
Heisenberg interactions are only considered across the hexagons. While these interactions
preserve TRS and all the discrete lattice symmetries of the kagome lattice, the additional
three-spin scalar chirality interactions on the triangles parametrized by Jχ break explicitly
TRS and spatial parity. Note that Hamiltonian Eq. (4.2.1) features SU(2) invariance in
spin space. For simplicity we will set J1 = 1 in the following.

In Ref. [161] a CSL phase was found for 0.05π . arctan |JχJ1
| . π/2 and J2 = J3 = 0. In

this case, TRS is explicitly broken. Interestingly a two-fold degenerate ground state was
found, which furthermore exhibits the expected modular data and entanglement spectrum
for a topologically ordered chiral ν = 1/2 Laughlin state-like phase. On the other hand in
Ref. [160] a chiral spin liquid with spontaneous TRS breaking was discovered for Jχ = 0
and 0.2 . (J2 = J3)/J1 . 0.7. Here the ground state degeneracy is four, which can

Figure 4.1.: Sketch of the kagome lattice and of the different interaction terms of the
Hamiltonian (4.2.1). Heisenberg interactions between first, second and third
nearest neighbour are considered. The third nearest neighbour Heisenberg in-
teractions are only considered across the hexagons. Three-spin scalar chirality
interactions, breaking time-reversal and parity symmetries, are also considered
on grey shaded triangles.
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CSL

Figure 4.2.: Excitation Spectra from Exact Diagonalization. Different symbols and colors
correspond to different momentum/pointgroup symmetry sectors. We use the
cluster geometries and notation explained in Ref. [152] (a) Effect of Jχ term on
spectrum on the 30 sites cluster. The four-fold degeneracy of the ground state
is lifted to a two-fold degereracy which corresponds to one sign of the scalar
chirality. (b) Scan across the classical transition line for Jχ = 0 on the 36b
sites cluster. The four-fold degereracy of the CSL is only present close to J2 =
J3 (yellow shading). (c) Energy spectra for J2 = J3 = 0.4, Jχ = 0 and various
system sizes Ns and geometries. Turquoise rectangle: (0, 0) [Γ] momentum,
even under 180◦ rotation. Blue up triangle: (0, π) [M ] momentum, odd under
180◦ rotation. Red down triangle: (0, 0) [Γ] momentum, even under 180◦
rotation, odd under reflection.

be understood as arising from two copies of opposite chirality of a two-fold degenerate
ν = 1/2 Laughlin state. Unlike several topological phases as Toric code [41] and double-
semion [164] phases that also have a four-fold ground state degeneracy, we will show that
in this case time-reversal symmetry is spontaneously broken.
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4.3. Energy spectroscopy

To investigate the persistence of this chiral spin liquid at the thermodynamical limit, we
studied the model for J2 = J3 = 0.4 and Jχ = 0 up to 42 sites. The low-energy spectra for
different system sizes are shown in Fig. 4.2 c). While the energy splitting between the four
ground states has a non-monotonous behaviour, the energy gap between the four lowest
energy states and the fifth one increases with the system size. Moreover, the ratio of the
energy splitting to the energy gap decreases with the system size, this tends to indicate
that this phase is indeed realized at the thermodynamical limit. It is also important to
notice that the momentum sectors involved in the four-fold degenerate manifold depend
on the cluster shape and can be predicted in complete analogy to the Fractional Quantum
Hall and Fractional Chern insulator states [165, 166].

In Fig. 4.2 a) we investigate the energy splitting of the four ground states as we switch
on a finite Jχ coupling. At Jχ = 0 the long-range order in the spin chirality is spectrally
encoded in the presence of two states per topological sector, where the two states have
to be at the same momentum, but differ in the spatial reflection quantum number (if the
sample allows this symmetry). As is shown in Fig. 4.2 a), the two states per sector split
very rapidly upon switching on Jχ 6= 0. We can understand the action of Jχ regarding
the scalar chirality in analogy to the effect of a longitudinal magnetic field on the two
degenerate ground states in a ferromagnetic Ising model in the ordered phase, where the
magnetic field immediately selects one of the two ordered states. As we show later based
on overlaps, the chiral spin liquid thus selected by Jχ is of the same type as the one
stabilised in the J1 − Jχ model alone, and is connected to the TRS symmetric situation
in the absence of Jχ.

In Fig. 4.2 b) we investigate the effect of a deviation from the J2 = J3 condition (in the
absence of Jχ) by fixing J2 = 0.5 and varying J3. One observes that the four-fold ground
state degeneracy is rapidly lifted when J3 deviates more than about 0.05 ∼ 0.1 from 0.5.
Interestingly the line 0 < J2 = J3 < 1 is the classical transition line between a magnetically
ordered q = 0 ground state for J3 < J2 and the non-coplanar magnetically ordered cuboc1
phase for J3 > J2 [38]. Below we will show that also the overlaps with the variational
wave functions are large only in the direct vicinity of this classical transition line. A
deeper understanding of the classical ground state configurations on that line and of the
effect of quantum fluctuations on that manifold might thus lead to an identification of the
crucial ingredients required to predict and uncover chiral spin liquids in TRS Hamiltonians
on different lattices. We note in passing that the explicitly TRS breaking Hamiltonian
Eq. (4.2.1) with Jχ 6= 0 can be considered as a truncated version of a parent Hamiltonian
for the CSL constructed in Refs. [167, 168], similar to the spin Hamiltonian on the square
lattice considered in Ref. [46].

In order to finally prove that the two CSLs from Refs. [160, 161] are in the same phase,
Fig. 4.3 shows excitation spectra from Exact Diagonalization for a path connecting the
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Figure 4.3.: Excitation Spectra for a path in phase space connecting the two CSLs from
Refs. [160, 161] on a 30 sites lattice. The excitation spectra remain fully
gapped over the whole path thus no phase transition takes place. The param-
eters in Eq. (4.2.1) are chosen J2 = J3 = 0.5 cos(π2 θ), Jχ = 1√

2 sin(π2 θ) and
J1 = cos(π2 θ) + 1√

2 sin(π2 θ) Turquoise rectangle: (0, 0) [Γ] momentum, even
under 180◦ rotation. Blue up triangle: (0, π) [M ] momentum, odd under 180◦
rotation.

two CSLs. We find that no gap is closing and thus the two phases are connected without
a phase transition.

4.4. Parton construction and overlaps

As stated earlier on, the CSL can be considered as lattice analogues of the bosonic ν = 1/2
Laughlin state. In recent years substantial activity focused on realizing such states on
fractionally filled Chern insulators, so called Fractional Chern Insulators (FCI) [165, 169,
170]. It is thus a natural question whether the CSLs under consideration might also have
such an interpretation. The natural bosonic ν = 1/2 FCI state on the kagome lattice [171,
172] however does not have the correct magnetisation since it corresponds to magnetisation
m/msat = ±2/3 instead of the required m = 0 1.

In the absence of a simple FCI candidate wave function we pursue an alternative ap-
proach, based on a parton construction. In order to understand and classify the different
spin liquids a generalized construction scheme called parton construction has been in-

1An interesting idea for future study might be to combine a featureless Mott insulator wave function with
bosonic density n = 1/3 (i.e. magnetisation m = 2/3) with a ν = 1/2 FCI state.
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Figure 4.4.: Band structure of the [π/2, 0] - model used to generate the pair of model states
with positive scalar chirality. a) geometry of the unit cell. The mean-field
parameters χij are chosen such that there are π/2 fluxes through the triangles
and no flux through the hexagons. b) Brillouin zone of the model (shaded)
and conventional first Brillouin zone of the kagome lattice (hexagon). c) Band
structure of the model along the path between high symmetry points in the
Brillouin zone as drawn in b). The bands are separated by a finite gap. Each
solid (dashed) band carries Chern number −1 (+1).

troduced by Refs. [106, 173–177] - see [178] for an introduction. The main idea of this
technique is to split up each spin operator Si at site i into two fermionic parton operators
ci,↑, ci,↓ according to

S+
i = c†i,↑ci,↓, S

−
i = c†i,↓ci,↑,

Szi = 1
2(c†i,↑ci,↑ − c

†
i,↓ci,↓).

(4.4.1)

Note that by introducing these operators the Hilbert space is enlarged due to the possibility
of doubly occupied or vacant sites. Substituting the parton operators for the spin operators
and performing a mean-field approximation by introducing mean-field parameters χij =∑
σ

〈
c†iσcjσ

〉
yields (ignoring constants) a tight-binding model of type

Hmean = 1
2
∑
i,j,σ

(
χijc

†
iσcjσ + h.c.

)
. (4.4.2)
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4. Nature of chiral spin liquids on the kagome lattice

Several of these models have been investigated for the kagome lattice [26–29, 37]. Here
we focus on nearest neighbour χij only and the norm is chosen to be |χij | = 1. Physically
different states can be created by choosing χij such that different magnetic fluxes thread
the triangles and the hexagons of the kagome lattice. Amongst these states we consider
states whose parent mean-field models have uniform ±π/2 flux through the triangles and
zero flux through the hexagons [26, 27, 37]. To do so a magnetic six sites unit cell is
needed instead of the standard three sites unit cell of the kagome lattice. In the following
we will call these the [±π/2, 0] - models. On the parton level these wave functions break
time and parity symmetry. Thus the projected wave functions are expected to break these
symmtetries too. Moreover the states constructed from the [π/2, 0] - model are related to
the states of the [−π/2, 0] - model by time-reversal symmetry.

The unit cell geometry, Brillouin zone and band structure of the [π/2, 0] - model are
shown in Fig. 4.4. All six bands have non-zero Chern numbers as indicated in Fig. 4.4c). To
obtain a Sz = 0 model state, the three lowest bands are completely filled both for spins up
and spins down and an exact Gutzwiller projection is applied to project onto the physical
spin subspace. As the filled bands are separated by a finite gap from the empty ones, the
spin-spin correlations after projection are expected to decay exponentially with distance,
and thus describe a spin disordered state. The Chern number of the filled bands for the
[π/2, 0] - model ([−π/2, 0] - model) is −1 (+1). The [π/2, 0] - model ([−π/2, 0] - model)
yields a positive (negative) scalar chirality expectation value for every basic triangle. The
average expectation value is the same for the two topological partners within numercial
precision and is given by 〈Si · (Sj × Sk)〉i,j,k∈4,5 = ±0.2057 ± 0.0005. The long-range
chiral-chiral correlations are expected two be the square of this value. Thus we get value
of 0.042 for the long-range chiral-chiral correlation functions which is within the same
order of magnitude as the correlations computed in Refs. [179, 180].

On the torus there are two independent non contractible loops. Some of the gauge
choices which leave the flux through the triangles and hexagons invariant, correspond to
different fluxes through these torus loops. Threading flux through these loops corresponds
to a Laughlin flux insertion. Thereby different topological states can be generated. These
states cannot be distinguished by local observables and therefore are degenerate for local
Hamiltonians in the thermodynamic limit. For the chiral spin liquid a two-fold topological
ground state degeneracy is expected. Thus, by threading different fluxes through the torus
we should only be able to create a two-dimensional space. We numerically computed the
Gutzwiller projected wave functions (GPWFs) of the [±π/2, 0] - models with a fixed gauge.
In order to construct the topological partners of these states we additionally thread fluxes
through the torus as explained in the previous section. We checked that for each of the
[±π/2, 0] - models, only two linearly independent states can be constructed as expected
for a CSL within a numerical accuracy of 10−3, similar as in Ref. [181].

We compare now these four model states with the ground state |ψED〉 of the Hamiltonian
(4.2.1) obtained using Exact Diagonalization. We choose the overlap OED

GW of the ground
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4.4. Parton construction and overlaps

Figure 4.5.: Overlaps OED
GW of GPWFs with ground states from Exact Diagonalization for

J2 = J3 = 0 and J1 =
√

1− J2
χ on a 30 sites lattice. The overlaps of the

GPWFs of the ±π/2-models are symmetric under changing the sign of Jχ.
The maximum overlap is equal to 0.97 and is reached for Jχ = ±0.7. The
CSL phase extends almost up to the Heisenberg point.

state wave function with the four model states as our figure of merit:

OED
GW ≡

√∑
α

|〈ψED〉ψαGW |
2 (4.4.3)

Overlaps of the GPWFs with the ground state of the Hamiltonian (4.2.1) for different
parameters on a Ns = 30 sites sample are shown in Fig. 4.5. The overlaps of our model
state with the ground state wave functions of the model of Ref. [161] where J2 = J3 = 0,
J1 = cos θ and Jχ = sin θ are shown in Fig. 4.5(a). We found that overlaps for Jχ between
0.1 and 1 range from 0.62 to 0.97. The overlap of the two GPWFs of the [−π/2, 0]-model
are by orders of magnitude larger than those of the [+π/2, 0]-model. For Jχ between −1
and −0.1 the overlaps are exactly the same within numerical precision as for Jχ between
0.1 and 1 but the role of the GPWFs from the [+π/2, 0]-model and [−π/2, 0]-model are
exchanged. This is expected since the model with negative Jχ should have a positive scalar
chirality and therefore only little overlap with the variational states form the [−π/2, 0]-
model with negative chirality and vice versa.

For the time-reversal symmetric model with Jχ = 0, our variational wave functions
have substantial overlap only close to the line J2 = J3, in agreement with the energy
spectroscopy results discussed above [Fig. 4.5(b)]. In this region the overlaps reach up to
0.72 for Ns = 30.

As can be seen in Fig. 4.5 c) for Jχ = 0.3 and for Jχ = 0.6 (not shown), the region of the
CSL broadens significantly when Jχ is increased from zero. For Jχ = 0.3 (resp. Jχ = 0.6)
the overlaps on the classical transition line for J2 = J3 between 0 and 0.7 range from 0.8
to 0.9 (resp. from 0.85 to 0.95).
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4. Nature of chiral spin liquids on the kagome lattice

4.5. Conclusion

We showed that the two recently found realizations of chiral spin liquids on the kagome
lattice [160, 161] are indeed related and can be described by Gutzwiller projected parton
wave functions. This yields an intuitive microscopic picture of the CSL phase stabilized in
these models. The ansatz wave functions we chose have been shown to describe a CSL on
the kagome lattice [26, 27, 37]. We constructed a pair of Gutzwiller projected parton CSL
wave functions for each sign of the scalar chirality. We suggested that these states describe
the CSL ground state found on the kagome lattice. To prove that indeed these wave
functions describe the novel CSL phases found in Refs. [160, 161] we computed overlaps of
these variational wave functions with the ground state wave functions computed by Exact
Diagonalization. Substantial overlaps were found in regions of the phase diagram where
the CSL is expected. By further investigation of excitation spectra, we showed that the
CSL phase in Ref. [160] is only present on the transition line between a chiral cuboc1 and
a coplanar q = 0 phase of the classical phase diagram [38]. This could serve as a guiding
principle for finding CSL phases in other models and on others lattices. Being related to
the Laughlin state, these states should exhibit anyonic excitations. Their investigations
will be pursued in a future work.

Note added

While completing the present manuscript we became aware of parallel work reaching sim-
ilar conclusions using complementary methods [179, 180].
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Abstract

We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional
scalar chirality term and show that a chiral spin liquid is stabilized in a sizeable region
of the phase diagram. This topological phase is situated in between a coplanar 120◦ Néel
ordered and a non-coplanar tetrahedrally ordered phase. Furthermor we discuss the nature
of the spin-disordered intermediate phase in the J1-J2 model. We compare the ground
states from Exact Diagonalization with a Dirac spin liquid wave function and propose a
scenario where this wave function describes the quantum critical point between the 120◦
magnetically ordered phase and a putative Z2 spin liquid.

5.1. Introduction

The emergence of quantum spin liquids in frustrated quantum magnetism is an exciting
phenomenon in contemporary condensed matter physics [89]. These novel states of matter
exhibit fascinating properties such as long-range ground state entanglement [42, 183] or
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5. Chiral Spin Liquid on the Triangular Lattice

anyonic braiding statistics of quasiparticle excitations, relevant for a potential implemen-
tation of topological quantum computation [6]. Only very recently such phases have been
found to be stabilized in realistic local spin models [30, 31, 33, 42, 44, 140, 160–162, 167,
184–188].

Triangular lattice Heisenberg models are a paradigm of frustrated magnetism. Although
the Heisenberg model with only nearest neighbour interaction is known to stabilize a
regular 120◦ Néel order [25, 80, 189, 190] adding further interaction terms may increase
frustration and induce magnetic disorder to the system. Experimentally, several materials
with triangular lattice geometry do not exhibit any sign of magnetic ordering down to
lowest temperatures [17–20]. These include for example the organic Mott insulators like
κ− (BEDT− TTF)2Cu2(CN)3 [19, 20] or EtMe3Sb[Pd(dmit)2]2 [17, 18] and are thus
candidates realizing spin liquid physics.

Historically Kalmeyer and Laughlin [24] introduced the chiral spin liquid (CSL) state on
the triangular lattice. This state closely related to the celebrated Laughlin wave function of
the fractional quantum Hall effect has recently been shown to be the ground state of several
extended Heisenberg models on the kagome lattice [140, 160–162]. The question arises
whether a CSL can indeed be realized on the triangular lattice as originally proposed. In
a recent study [185] this was shown for SU(N) models for N ≥ 3. In this letter we provide
conclusive evidence that indeed the CSL is stabilized in a spin-1/2 Heisenberg model upon
adding a further scalar chirality term JχSi · (Sj × Sk) similar as in Refs. [140, 161, 184,
185]. Such a term can be realized as a lowest order effective Heisenberg Hamiltonian
of the Hubbard model upon adding Φ flux through the elementary plaquettes [161, 191,
192], either via a magnetic field or by introducing artificial gauge fields in possible cold
atoms experiments [193, 194]. The coupling constants then relate to the Hubbard model
parameters t and U as J1 ∼ t2/U and Jχ ∼ Φt3/U2 where J1 (resp. Jχ) is the nearest
neighbour Heisenberg (resp. scalar chirality) coupling.

Another open question in frustrated magnetism of the triangular lattice is the nature of
the intermediate phase in the phase diagram of the S = 1/2 Heisenberg model with added
next-nearest neighbour couplings around J2/J1 ≈ 1/8. Several authors [80–82] found a
spin disordered state. Recently several numerical studies [113, 195–199] proposed that
a topological spin liquid state of some kind might be realized in this regime. The exact
nature of this phase yet remains unclear. In this Letter we advocate the presence of a
O(4)∗ quantum critical point [200–203] separating the 120◦ Néel order from a putative
Z2 spin liquid. The diverging correlation length at this quantum critical point and the
neighbouring first order phase transition into the stripy collinear magnetic ordered phase
render the unambiguous identification of the intermediate spin liquid phase challenging
however.
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5.2. Model

Figure 5.1.: Approximate T = 0 phase diagram of the J1-J2-Jχ model on the triangular
lattice, c.f. Eq. (5.2.1). The extent of phases is inferred from excitation spectra
from ED on a periodic 36 sites triangular simulation cluster, see main text for
details.

5.2. Model

We investigate the Heisenberg model with nearest and next-nearest neighbour interactions
with an additional uniform scalar chirality term on the triangular lattice

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj+

Jχ
∑

i,j,k∈4
Si · (Sj × Sk)

(5.2.1)

where we set J1 ≡ 1 and consider J2, Jχ ≥ 0. Amongst a 120◦ Néel order, a stripy
and a tetrahedral magnetic order we find a CSL being realized in an extended region of
the phase diagram in Fig. 5.1. A first study of the classical phase diagram for Jχ = 0
[80] found a three sublattice 120◦ Néel ordered ground state for J2 < 1/8 whereas for
1/8 < J2 < 1 a two-parameter family of magnetic ground states with a four-site unit cell
was found [81]. Two high-symmetry solutions within this manifold are a two-sublattice
collinear stripy magnetic order breaking lattice rotation symmetry and a tetrahedral non-
coplanar state with a uniform scalar spin chirality on all triangles. Taking into account
quantum fluctuations by applying spin-wave theory, large-S perturbation theory and ED
studies [80–82] the degeneracy is lifted by an order-by-disorder mechanism. The true
quantum ground state for J2 & 0.18 exhibits stripy Néel order. Yet the behaviour of the
system close to the classical phase transition point J2 = 1/8 has not been fully understood.
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5. Chiral Spin Liquid on the Triangular Lattice

5.3. Phase diagram

We performed ED calculations on a Ns = 36 sites simulation cluster with periodic bound-
ary conditions to investigate ground state properties and order parameters of the model
(5.2.1). We have also checked selected results on smaller clusters, but the Ns = 36 cluster
is particularly well suited because this single cluster can harbour all phases which we were
able to detect.

We present the approximate phase diagram in Fig. 5.1 based on the quantum numbers
of the ground state level and the first excited state. The ground state is always in the
Γ.A1 representation (except in the stripy phase where Γ.A1 and the two Γ.E2 sectors
are almost degenerate). The symmetry sector of the first excited state determines the
phase. Orange: S = 1 K.A1 (120◦ Néel) Light blue: S = 0 Γ.E2b (CSL), Green: S = 0
Γ.E2a,Γ.E2b degenerate (Dirac/Z2 spin liquid), Dark Blue: S = 0 Γ.A1, Γ.E2a, Γ.E2b
degenerate (stripy magnetic order), Dark red/Light red: S = 1 M .A / S = 0 Γ.E2a
(tetrahedral magnetic order) For the magnetically ordered phases these quantum numbers
follow from a standard tower of states symmetry analysis [204, 205], see supp. mat. [206]
for details. The spectral phase diagram is further corroborated by the analysis of relevant
order parameters and variational energies of model wave functions, c.f. Fig. 5.2, where the
agreement is striking.

We find three magnetically ordered phases, a 120◦ Néel order [25], a stripy order [80–
82], and a non-coplanar tetrahedral order [58, 184, 207]. The structure factor S(q) =
|
∑
j e

iq(rj−r0)〈Sj ·S0〉|2/Ns is peaked at the Brillouin zone points K for 120◦ Néel and at
M for stripy and tetrahedral order [58]. To distinguish between the latter we computed a
nematic order parameter

N =
∑

(i,j)‖(0,1)
〈(S0 · S1) (Si · Sj)〉c (5.3.1)

indicative for the stripy phase and the summed scalar chirality correlations

X =
∑

(i,j,k)∈4

〈
χ(0,1,2) · χ(i,j,k)

〉
(5.3.2)

where χ(i,j,k) = Si · (Sj × Sk), indicative for tetrahedral order. The regions where these
quantities are large in magnitude agree very well with the phase boundaries derived from
tower of states analysis, cf. Fig. 5.2. For the tetrahedral order the S = 1 M .A level is
lowest energy level in the tower of states, depicted dark red in Fig 5.1. Close to the stripy
phase we observe that the first excited level is a S = 0 Γ.E2a level, shown as the light red
region in Fig. 5.1. We believe that this level is an artifact of the finite size sample and
is related to the order by disorder mechanism. In neither of the ground state correlation
functions we can see a difference between the light red region and the red region and thus
conclude that also this region belongs to the same tetrahedral phase.
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5.4. Chiral Spin Liquids

Figure 5.2.: Order parameters and variational energies of model wave functions. Left:
static spin structure factor S(q). evaluated at K and M point. Mid-
dle: nematic order parameter N as in Eq. (5.3.1) and (disconnected) scalar
chirality correlation X as in Eq. (5.3.2) Right: Variational energies ε =
(Emodel − EED)/EED for the chiral and Dirac spin liquid.

5.4. Chiral Spin Liquids

are spin disordered chiral topological states. Hallmark features of this phase are the
topology dependent ground state degeneracy, long-range entanglement, abelian anyonic
excitations and gapless chiral edge modes. Several instances of this phase have recently
been found in local spin models [44, 140, 160–162, 167, 184–188, 208]. It has been un-
derstood that a representative lattice model wave function for the CSL is provided by
Gutzwiller projected parton wave functions (GPWF) with a completely filled parton band
with Chern number ±1 [105, 140, 178, 185, 209]. We observe no strong magnetic structure
peak in between the 120◦ Néel order and the tetrahedral, cf. Fig. 5.2. Therefore a spin
disordered state is formed in a sizeable intermediate region. The summed scalar chirality
correlations X in Fig. 5.2 are relatively large in this regime compliant with the fact that
here a CSL with a uniform chirality is formed. We will now show conclusive evidence
that this is indeed the case. We do so by constructing two GPWFs describing the two
topological sectors of the chiral spin liquid on the torus and by computing their overlaps
with the two lowest lying exact eigenstates from ED, similarly as in refs. [140, 185].

In Fig. 5.3 we show energy spectra for a horizontal cut in the phase diagram at Jχ = 0.24.
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Figure 5.3.: Excitation spectra of the model (5.2.1) from ED for Jχ = 0.24 and overlaps
with the two CSL wave functions on a 36 site cluster. Full (empty) symbols
denote even (odd) spin levels, different types of symbols denote different space-
group representations. The numbers denote the summed overlaps OαGW−ED
as in Eq. (5.4.1). We find overlaps up to 0.92.

The first excited level above the ground state for J2 . 0.16 belongs to the irreducible
representation Γ.E2b. The region where this representation is the first excited state is
colored light blue in Fig. 5.1. The parton tight binding model for the GPWFs we choose
has a two-site unit cell on the triangular lattice with π/2 flux through the triangles. This
yields a bandstructure with two bands with Chern numbers ±1. The ground state of this
tight binding model at half filling is given by filling the orbitals of the lower band. After
Gutzwiller projection such a state has been shown to yield a CSL wave function [140, 185,
210, 211]. To construct the topological partner of the CSL wave function the phases in
the tight-binding model before projection can be tuned such that locally the flux through
each triangle remains π/2 while the flux through incontractible loops around the torus
changes. The set of fluxes can be chosen arbitrarily, yet after Gutzwiller projection these
states only form a two dimensional space. This can be verified by computing the overlap
matrix for several GPWFs with different fluxes through the torus. Indeed we find that
thereby the rank of the overlap matrix is 2 with a numerical precision of ∼ 10−3 [210].
We chose two out of these wave functions spanning the CSL subspace and compute the
overlaps with the lowest two numerical eigenstates from ED. We find that these two model
wave functions |ψαGW〉 yield very high overlaps

OαGW−ED ≡
∣∣∣〈ψ0

ED|ψαGW

〉∣∣∣2 +
∣∣∣〈ψ1

ED|ψαGW

〉∣∣∣2 (5.4.1)
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5.4. Chiral Spin Liquids

Figure 5.4.: ED spectra for Jχ = 0 and spectral decomposition of several model wave
functions for J2 = 0.12 and J2 = 0.15. Full (empty) symbols correnspond to
even (odd) spin. The diameter of the poles is proportional to the squareoverlap
| 〈ψED〉ψModel|2. Besides the CSL and Dirac spin liquid wave functions the
three wave functions denoted by Γ.A1, Γ.A2 and Γ.E2b are the ground states
in the respective symmetry sectors at J2 = 0.3.

with the two lowest lying eigenstates of ED of up to 0.92 1. In Fig. 5.3 we plot the square
overlap | 〈ψnED〉ψαCSL|2 with the respective exact eigenstate (n) as the diameter of the red
(α = 1) and light blue (α = 2) circles. The overlaps are large where the first excited
state is in the Γ.E2b representation and quickly decay afterwards. This region coincides
approximately with the region where the CSL model wave function has a low variational
energy in the upper right panel of Fig. 5.2. We note that the CSL phase in this phase
diagram is located near a tetrahedral magnetic phase, reminiscent of a recent study of a
frustrated honeycomb spin model [184]. It would be interesting to investigate the nature
of the phase transitions from the tetrahedral [184] and the 120◦ Néel phases into the CSL.
Finally a recent purely variational study [211] also found evidence for a CSL in our model
for selected values of J2 and Jχ.

1Note that both our model wave functions do not have a fixed (angular-) momentum and thus overlap
with both exact eigenstates. The fluxes of these two wave functions have been chosen such that one
state has mainly overlap with the first excited state and the other mainly with the ground state.
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5. Chiral Spin Liquid on the Triangular Lattice

5.5. Spin disordered state in the J1−J2 Heisenberg model

We now turn to the time-reversal invariant J1−J2 line with Jχ = 0. A number of recent
numerical works [113, 195–198] involving flavors of variational Monte Carlo (VMC) [113,
195] and Density Matrix Renormalization Group (DMRG) techniques [196–198] found a
spin disordered region between the 120◦ magnetic order region and the stripy magnetic
order at larger J2/J1. Multiple candidate phases for this intermediate parameter range
have been proposed, without a consensus so far. Whereas Ref. [196] proposes a gapped
spin liquid phase, Ref. [195] proposes an extended gapless ASL state. In Ref. [198] it
was argued that a CSL and a Z2 spin liquid are competing in the low energy sector in
the intermediate region 0.07 . J2 . 0.15. Ref [113] compared variational energies of
several Z2 spin liquids based on Gutzwiller projected wave functions. Interestingly they
find that among all of these wave functions the lowest energy is not attained by a state
with Z2 structure, but rather by a model whose band structure features gapless Dirac-like
excitations before projection (see supp. mat. [206] and Refs. [113, 212]). After projection
this state is called Dirac Spin Liquid (DSL) and Ref. [113] finds an extended gapless region
described by a dressed wave function of the DSL kind.

In order to shed light on this open question we present the detailed energy spectrum of
the Ns = 36 site cluster along the Jχ = 0 line in the top panel of Fig. 5.4. In the small
J2 region the first few levels are in agreement with the tower of state expectations for the
120◦ Néel state [25], and similarly at the largest J2 values shown for the stripy collinear
magnetic order [82] 2.

Focusing on the intermediate region 0.08 . J2 . 0.16 we would expect to see an
approximate four-fold ground state degeneracy in either a non-chiral Z2 spin liquid or
two time-reversal related copies of a CSL as in Refs. [140, 160]. This is not the case for
our system size. An additional complication comes from the observation that some of the
low-lying levels in the spin liquid region seem to be states which become the ground state
or low-lying levels in the stripy collinear region across the first order transition around
J2 ∼ 0.16. This illustrated by calculating overlaps of several low-lying eigenstates at
J2 = 0.3 with the eigenstates at J2 = 0.12 (J2 = 0.15) displayed in the lower left (right)
panel of Fig. 5.4.

Given the rather low variational energy of the DSL and to a lesser extent of the CSL
model wave functions as shown in the right part of Fig. 5.2 (and for the DSL in Refs. [113,
195]) we also compute the decomposition of these model wave functions onto the exact
ED eigenstates for J2 = 0.12 and J2 = 0.15, as shown in the lower part of Fig. 5.4. At
J2 = 0.12 the ground state has a sizeable overlap with the DSL model wave function of
0.56. Furthermore when going up to energies of about 0.6, we can also find four states
which have non-vanishing overlap with the two different topological sectors of the CSL
model wave functions, although the integrated weight is lower than for the DSL state.

2Some additional levels are visible remnants of the order by disorder mechanism [82]
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5.5. Spin disordered state in the J1−J2 Heisenberg model

Figure 5.5.: Overlaps of DSL wave function with ED eigenstates and decay of spin-spin
and twist-twist corralation functions 〈(S0 × S1) · (Si × Sj)〉 of the DSL from
VMC on a 144 sites lattice. The maximum ground state overlap is attained
at J2 = 0.1. The correlations decay algebraically over distance.

This might explain the findings of Ref. [198] and is due to the reported CSL stabilized at
finite but small Jχ. In the future one should also explore overlaps with a Z2 spin liquid
model wave function in order to address the propensity to this kind of spin liquid on an
equal footing the other model wave functions.

We have then explored the overlap of the exact ED ground state with the DSL model
wave function in a larger range of J2 couplings and observe the overlap to be maximal in the
vicinity of the putative 120◦ Néel to spin liquid quantum phase transition around J2 ∼ 0.08
in Fig. 5.5. Motivated by this observation we have explored correlation functions in the
DSL model wave function and we find likely power-law correlation functions which peak
at the K point in reciprocal space (consistent with Refs. [113, 195]). We also investigated
the spin vector chirality (twist) correlations and find them to exhibit likely power-law
correlations with a real space pattern in agreement with the (ordered) pattern in the 120◦
Néel ordered phase cf. Fig. 5.5.

These nontrivial observations motivate us to conjecture that the DSL wave function
should not be considered as a model wave function for an extended ASL region, but instead
as a lattice wave function correctly describing the long-distance properties the quantum
critical point out of the 120◦ Néel state into a spin liquid. The O(4)∗ theory [200–202]
is a strong contender describing this transition. Let us put this advocated picture into a
broader context: It is believed that Gutzwiller projected wave functions of partons with
SU(N) symmetry and a band structure with nD Dirac points capture some aspects (see
e.g. [213]) of a lattice realization of QED3: i.e. Nf = N × nD two-component Dirac
fermions coupled to a compact U(1) gauge field in 2 + 1 D.

It has been shown that in the limit of sufficiently large Nf there are no relevant operators
in the theory [111, 112], and therefore this wave function is representative for an extended
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ASL region at large Nf . For small Nf < N c
f on the other hand one expects QED3

to become confining in general. The DSL wave function with its power-law decaying
correlation functions could then describe a (multi)critical conformal field theory fixed
point in between confining phases. The precise value for N c

f is not known, although recent
work [214] bounds N c

f . 10. In the particular case of the DSL on the triangular lattice
we have N = 2 and nD = 2 resulting in Nf = 4, substantially lower than the presently
known bound. There is also an earlier observation in Ref. [215] that a different Nf = 4
DSL on the honeycomb lattice describes rather accurately the deconfined quantum critical
point [216] between collinear Néel order and a VBS phase, giving further evidence that
Nf = 4 DSLs should perhaps be seen as an approximate fixed point wave functions for
exotic quantum critical points.

The quantum critical scenario naturally comes with divergent correlation lengths, which
could be an explanation for the so far missing clear ground state degeneracy both in
DMRG and ED. Using couplings frustrating both the 120◦ and the stripy Néel orders, it
might be possible to widen the spin-liquid region and to reduce the correlation lengths to
numerically accessible scales, allowing to identify the spin liquid unambiguously. It would
also be interesting to understand whether the CSL touches the Jχ = 0 line at the quantum
critical point.

5.6. Conclusion

We established the phase diagram of an extended Heisenberg model on the triangular
lattice. Amongst several magnetic orderings we found a chiral spin liquid phase in an
extended region. For the spin disordered region for Jχ = 0 we found that the DSL has
sizeable overlap with ED ground states. We proposed a scenario where this wave function
is the quantum critical wave function at a transition from magnetic 120◦ Néel order into
a putative spin liquid phase.
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We describe the author’s contribution to the project and present the published manuscript.
We studied the SU(N) Heisenberg model with an additional imaginary ring exchange term
on the triangular lattice,

H = J
∑
〈i,j〉

Pij + iK3
∑

(i,j,k)
(Pijk + H.c.), (6.0.1)

where Pij denotes the two-site exchange operator on N colors,

Pij |. . . αi . . . αj . . .〉 = |. . . αj . . . αi . . .〉 , αi ∈ 1, . . . , N. (6.0.2)

Analogously, Pijk denotes three-site cyclic exchange operator on the elementary triangles
of the triangular lattice. As explained in the paper, such a model can be realized in
the Mott insulating regime of an SU(N) Hubbard model with external magnetic field.
Experimentally such a system can be realized in ultracold atoms experiments with earth
alkaline atoms [217–224]. In the SU(2) case, Pij corresponds to the Heisenberg exchange
operator (S+

i S
−
j +S−i S

+
j ) and the ring exchange term i(Pijk−Pkji) to the scalar chirality

interaction Si ·(Sj×Sk). Hence, the model Eq. (6.0.1) may be regarded as a generalization
of the model Eq. (5.2.1) studied in chapter 5. In our research manuscript, we conclude
that a chiral spin liquid is stabilized in an extended region of the phase diagram for
N = 3, . . . , 9.
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(a) (b)

Figure 6.1.: Parton ansatz and band structure for the SU(3) chiral spin liquid. (a) Geome-
try of the unit cell for the π/3 model and choice of Peierls phases. There is π/3
flux through each triangle. The periodicity of the unit cell has been chosen
in order to fit this unit cell onto simulation clusters of Exact Diagonalization.
(b) Band structure of the π/3 model. The three bands are gapped and carry
Chern numbers -1, -1, 2 from bottom to top.

The contribution by the author of this thesis was to construct model CSL wave functions
for the SU(N) chiral spin liquid and compute their overlap with the numerical ground
states. The coefficients of the CSL have been evaluated in the conventional real space
computational basis. The model has been studied further using Exact Diagonalization
with a novel technique that allows for directly working with irreducible representations of
the SU(N) symmetry group [225] by Pierre Nataf and Frédéric Mila. Variational energies
and further properties of model CSL wave functions have been studied by Miklós Lajkó
and Karlo Penc. The project was conceived by Andreas M. Läuchli and the numerical
edge spectra together with their analytical prediction have been computed by him.

6.1. Construction of the SU(N) chiral spin liquid

In order to construct the CSL model wave functions, we apply the general parton con-
struction explained in section 1.2.3. We consider a fermionic tight binding model on the
triangular lattice. We choose an ansatz with π/N flux through each triangle. This cor-
responds to 2π/N flux per unit cell. We will call this the π/N model. For defining this
model a N -site unit cell is used. The geometry of the unit cell for the N = 3 and N = 4
CSL and the choice of the Peierls phases are shown in Figs. 6.1 and 6.2.
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6.1. Construction of the SU(N) chiral spin liquid

(a) (b)

Figure 6.2.: Parton ansatz and band structure for the SU(4) chiral spin liquid. (a) Geome-
try of the unit cell for the π/4 model and choice of Peierls phases. There is π/4
flux through each triangle. The periodicity of the unit cell has been chosen
in order to fit this unit cell onto simulation clusters of Exact Diagonalization.
(b) Band structure of the π/4 model. The three bands are gapped and carry
Chern numbers -1, -1, -1, 3 from bottom to top.

The parton ansatz breaks time-reversal symmetry and yields N bands, which are well
separated from each other. Moreover, the lowest N − 1 bands carry Chern number ±1
whereas the top band carries Chern number ∓(N − 1). We fill the lowest band with
fermions of N colors to obtain the parton ground state |ψ0〉 and perform a Gutzwiller
projection,

|ψGPWF〉 = PGW |ψ0〉 . (6.1.1)

To compute the coefficients of this wave function, the formula Eq. (2.2.31) is straightfor-
wardly generalized to the case of N colors instead of the two up and down spins in the
SU(2) case. By shifting the reciprocal space we can insert flux through the torus. This
way, we are able to construct a family of wave functions, depending on the amount of flux
inserted. The overlap matrix is of rank 3 in the SU(3) case, and of rank 4 in the SU(4) case,
with a numerical precision of about 0.01. Consequently, we have been able to construct N
orthonormal wave functions spanning the subspace of the CSL. These wave functions are
then compared to the ground state wave functions from Exact Diagonalization in Fig. 3
of the paper.
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We show that, in the presence of a π=2 artificial gauge field per plaquette, Mott insulating phases of
ultracold fermions with SUðNÞ symmetry and one particle per site generically possess an extended chiral
phase with intrinsic topological order characterized by an approximate ground space of N low-lying
singlets for periodic boundary conditions, and by chiral edge states described by the SUðNÞ1 Wess-
Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by
extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N
Gutzwiller projected fermionic wave functions with flux π=N per triangular plaquette. Experimental
implications are briefly discussed.

DOI: 10.1103/PhysRevLett.117.167202

The search for unconventional quantum states of matter
in realistic models of strongly correlated systems has been
an extremely active field of research over the last 25 years.
Mott insulating phases in which charge degrees of freedom
are gapped have been argued to potentially host several
families of quantum spin liquids ranging from resonating
valence bond Z2 quantum spin liquids [1–3] to U(1)
algebraic spin liquids [4–6] and chiral spin liquids (CSLs)
[7–15]. The topological properties of these phases have
attracted a lot of attention due to their potential impact on
the implementation of quantum computers [16].
Cold atoms open new perspectives in that respect. In

particular, alkaline rare earths allow one to realize SUðNÞ
Mott phases with N as large as 10 [17–24], and if a chiral
phase can be stabilized, its low-energy theory is expected
to be the SUðNÞ level k ¼ 1 Chern-Simons theory. The
possibility to destroy long-range order in SUðNÞ general-
izations of the SU(2) antiferromagnet on bipartite lattices
has long been known [4,25], but the first proposal of a
chiral phase in the context of SUðNÞ models of cold atoms
goes back to the work of Hermele et al. [26,27], who
showed that a mean-field approach leads to the stabilization
of chiral phases on the square lattice in the limit of large N
and a large number of particles per sitemwith N=m integer
and ≥ 5. The same mean field applied to SUð6Þ on the
honeycomb lattice with one particle per site has also led to
the prediction of a chiral state, with a competing plaquette
state very close in energy [28]. More recently, Ref. [29]
suggested the stabilization of SUðNÞ CSLs on the square
lattice using static synthetic gauge fields, based on a slave-
rotor mean-field approach. In all theses cases, the results

call for further investigation with methods that go beyond
mean-field theory.
In this Letter, we show that the ground state of the Mott

phase of N-color fermions on the triangular lattice with one
particle per site is a SUðNÞ CSL in a large parameter range
if the system is subject to a static artificial gauge field with
flux π=2 per triangular plaquette. The starting point is the
SUðNÞ Hubbard Hamiltonian

H ¼ −t
X

hi;ji

XN

α¼1

ðeϕijc†i;αcj;α þ H:c:Þ þ U
X

i;α<β

ni;αniβ : ð1Þ

If the phases ϕij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal
to Φ, then, at a filling of one particle per site, and for large
enough U=t, the effective model is an SUðNÞ Heisenberg
model with local spins in the fundamental representation
of SUðNÞ endowed with real pairwise permutations and
complex three-site permutations. The Hamiltonian is a
generalization of the SU(2) model with scalar chirality
[30,31] and is defined by

H ¼ J
X

hi;ji
Pij þ K3

X

ði;j;kÞ
ðeiΦPijk þ H:c:Þ; ð2Þ

where the sum over ði; j; kÞ runs over all triangular
plaquettes, and Pij and Pijk are circular permutation
operators. To second order, the amplitude of the pairwise
permutation is simply given by J ¼ 2t2=U, while the 3-site
permutation appears at third order in perturbation theory
with K3 ¼ 6t3=U2. The cases Φ ¼ 0 and Φ ¼ π with
purely real positive [32] and negative [33] three-site
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permutation have been addressed earlier. In this Letter, we
concentrate on the case of a purely imaginary three-site
permutation Φ ¼ π=2 described by the Hamiltonian

H ¼ cos θ
X

hi;ji
Pij þ sin θ

X

ði;j;kÞ
ðiPijk þ H:c:Þ; ð3Þ

with the parametrization J ¼ cos θ and K3 ¼ sin θ. We
will discuss the experimental prospects of realizing this
Hamiltonian towards the end of the Letter. It is interesting to
note that parent Hamiltonians for SUðNÞ chiral spin liquids
have been proposed recently [34,35]. While there are some
structural similarities, it is not obvious that the spatially
compact and physically more realistic Hamiltonian Eq. (3)
features CSL phases. It is the goal of this Letter to provide
compelling numerical evidence, based on large-scale exact
diagonalizations (EDs) and Gutzwiller projected parton
wave functions, that the above Heisenberg Hamiltonian
indeed features extended regions of SUðNÞ CSLs for all
values of N ¼ 3 to 9 considered here.
Exact diagonalizations.—We start by investigating finite

periodic triangular lattice clusters as a function of θ for
various values of N. We focus on the range θ ∈ ½0; π=2�
in the following. θ > π=2 is likely to be dominated by
ferromagnetism, while θ < 0 yields the time-reversed, but
otherwise identical physics as −θ. For small values of
N ¼ 3, 4 we used the standard ED approach employing all
the space group symmetries, while only considering the
individual color conservation, corresponding to an Abelian
subgroup of SUðNÞ. For all other N a recently developed
ED approach by two of the authors [36], exploiting the
SUðNÞ symmetry at the expense of spatial symmetries, is
currently the only way to address these systems within ED.
Depending on N, the largest system sizes Ns range from 21
to 27 lattice sites.
In Fig. 1(a) we plot the ED results for the energy per site

of the ground state as a function of θ for all considered N

(open symbols). While the curves for N ≲ 5 look rather
smooth at first sight, it is visible that the energy per site
displays kinks around θ=π ∼ 0.05 − 0.1 and at θ=π ∼
0.35 − 0.4 for N ¼ 6 to 9. For comparison we plot the
energy expectation value of parameter-free Gutzwiller
projected CSL model wave functions for all values of N
(full lines). We will discuss the properties of these wave
functions in a moment. Interestingly, these model wave
functions have very competitive energies, especially in the
θ region slightly above the first kink. For a quantitative
comparison we show in Fig. 1(b) the ratio of the variational
energy divided by the ED ground state energy. It is
impressive that for N beyond 3 the best ratio exceeds
0.98 for the system sizes considered. So the picture so far is
that the small and large θ regimes for all considered N are
most likely other phases, while the intermediate region
could harbor CSLs.
SUðNÞ CSLs are intrinsically topologically ordered:

They exhibit a nontrivial ground state degeneracy on the
torus [27,37] and fractional excitations. The ground state
degeneracy on the torus is expected to be N for these
particular states with N different Abelian anyons [26,27].
In our numerical simulations, we can detect this degen-
eracy by investigating the low-energy spectrum on sam-
ples with a total number of lattice sitesNs that is an integer
multiple of N. In Fig. 1(c) we display the energy spread
ΔGS of these N expected ground states for different N as a
function of θ. As a general trend we observe that the
splitting reduces significantly as we increase N. On the
other hand, several samples still show a substantial
splitting. Naively one would expect a simple exponential
suppression of the splitting with system size; however, in
the related context of fractional Chern insulators a more
subtle dependence of the ground space splitting on the
actual shape of the clusters has been observed and
rationalized [48]. We think that similar considerations
apply here as well.

(a) (b) (c) (d)

FIG. 1. Panel (a) Ground state energy per site as a function of θ for various N and Ns. Open symbols (full lines) denote ED (VMC)
results. (b) Quality of the VMC wave function as measured by the ratio EVMC=EED. (c) Energy splitting among the expected N singlet
states forming the ground space manifold of a SUðNÞ CSL. (d) Energy gap from the ground state to the first excited singlet state which is
not part of the expected ground space manifold.

PRL 117, 167202 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

167202-2

6. Chiral Spin Liquids in SU(N) Fermionic Mott Insulators

98



Finally we also measure the gapΔsinglet from the absolute
ground state to the first singlet level that is not part of the
expected ground state manifold. This is a measure for the
excitation gap in the gapped CSL states. In Fig. 1(d), one
observes an approximate dome-shaped behavior of this gap
for all N, and furthermore this gap seems to depend only
weakly on N. The approximate region in θ where the
N-fold ground state degeneracy splitting is small compared
to the excitation gap (for large N) is indicated as a shaded
region in all the panels, and indicates a rough stability
region for the SUðNÞ CSLs on the triangular lattice. One
should note, however, that the precise extent of the CSLs
for small N is an open question at this point.
Variational parton approach.—An appealing way to

describe the SUðNÞ CSLs is to use a parton-based mean
field approach [26,27,49–54], complemented with a
Gutzwiller projection. The idea is to fractionalize the
elementary spin degree of freedom into fermionic spinons
(partons) with N colors. For an exact description, a
dynamical gauge field needs to enforce the physical
constraint of one fermion per site. At the mean-field level,
however, it is sufficient to specify the band structure and
filling of the fermionic spinons. In the SUðNÞ CSLs of
interest here, the spinon band structure consists of N bands,
where the lowest band is completely filled for all N colors
and separated by a gap from the other bands. In addition,
this band is required to have Chern number �1. For the
triangular lattice we use a Hofstadter-type tight-binding
Hamiltonian with a uniform flux of π=N per triangular
plaquette [55], fulfilling the requirements on the band
structure. This mean-field state can now be turned into a
valid spin wave function by the application of an exact
Gutzwiller projection, enforcing the presence of exactly
one fermionic spinon per site. Such a wave function can
be handled by variational Monte Carlo (VMC) techniques,
and in particular one can easily calculate the energy
of the Hamiltonian Eq. (3) on rather large lattices. The
VMC energies displayed in Figs. 1(a) and 1(b) have been
obtained this way [37].
The next question is how the VMC approach is able to

account for the nontrivial ground state degeneracy on the
torus. It turns out that by threading flux through the
noncontractible loops around the torus, one is able to span
an N-dimensional subspace of Gutzwiller projected wave
functions, with almost identical local properties on finite
lattices. From the viewpoint of topological order, this
corresponds to a charge pumping procedure, where one
cycles through the N different ground states by threading a
different anyonic flux through the interior of the torus.
These concepts have recently been explored in the context
of SU(2) CSL on several lattices [56–58]. We have checked
in Fig. 2 that the subspace of wave functions spanned by
using 30 different boundary conditions at the mean-field
level leads to a robust rank-N overlap matrix, therefore
corroborating the expectation of an N-fold degenerate

ground state manifold in the thermodynamic limit also at
the VMC level.
Since the variational energies for SU(3) turned out not to

be very competitive, as shown in Figs. 1(a) and 1(b), we
explicitly calculated the overlaps of individual ED eigen-
states of the Hamiltonian Eq. (3) with the three orthogonal
Gutzwiller wave functions obtained on the same system
size. In Fig. 3 we plot the summed squared overlap of all
three wave functions (area of filled circles) with the ED
eigenstates (crosses) as a function of θ. Here we consider a
Ns ¼ 12 site system, where the momenta of the three ED
ground states in the CSL phase are at the zone center (one)
and at the corners of the Brillouin zone (twofold
degenerate). Around θ ¼ 0, the SU(3) triangular lattice
Heisenberg model is in a three-sublattice color ordered state
[59,60]; however, in the region around θ=π ∼ 0.25, the
three lowest ED eigenstates indeed have sizeable overlap
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FIG. 2. VMC ground space degeneracy: ordered sequence of
eigenvalues of the overlap matrix of Gutzwiller projected wave
functions with 30 random values of threaded flux. The overlap
matrix has precisely N large eigenvalues for an SUðNÞ CSL.

FIG. 3. Summed squared overlaps of the VMC model wave
functions with ED eigenstates for N ¼ 3 and Ns ¼ 12. The blue
crosses denote ED eigenstates, while the area of the filled red
circles denotes the total squared overlap on those eigenstates.
Around θ=π ≈ 0.25, the summed overlaps on the lowest three ED
eigenstates (degeneracy 1þ 2) account for over 75% of the total
weight, while the ground state alone is at 90%.
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with the VMC model wave functions, thereby underlining
the presence of an SU(3) CSL for sufficiently large values
of θ also for N ¼ 3.
Edge states.—Another hallmark of chiral topological

phases is the presence of chiral edge modes in the energy
spectrum of systems with a boundary. It has been under-
stood that the characteristic energy level structure of the
edge excitations as a function of the momentum along the
boundary serves as a fingerprint of the type of topological
order realised in the bulk [61]. The SUðNÞ CSLs consid-
ered here are expected to exhibit a chiral edge energy
spectrum described by the SUðNÞ1 Wess-Zumino-
Novikov-Witten (WZNW) conformal field theory (CFT)
[27]. This is the same CFT that governs the low-energy
spectrum of well-studied one-dimensional critical SUðNÞ
spin chains [34,35,62,63].
In order to test this hypothesis numerically we choose

to emulate a disk geometry by considering the specific
Ns ¼ 19 site triangular lattice with open boundary con-
ditions depicted in the left panel of Fig. 4. Such a lattice
might actually be built in future ultracold atom experiments
with optical lattices and a tight confining potential. This
sample still has a sixfold rotation axis about the central site,
yielding an angular momentum quantum number which we
use to plot the energy spectrum. The energy spectrum of
the disc has no topological ground state degeneracy, but
features gapless edge modes which typically propagate
only in one direction. The precise multiplet structure of the
edge modes depends on the anyonic sector. In our setup,
this sector can be simply labeled as a ¼ ðNs mod NÞ.
In Table I of the Supplemental Material [37], we have
compiled the SUðNÞ1 WZNW CFT predictions for the
different irreducible representations of SUðNÞ which
appear at a given excitation energy, here qualitatively

labeled by the excess angular momentum l − l0. In the
remaining panels of Fig. 4 we display the actual ED energy
spectrum of the Hamiltonian Eq. (3) for a fixed value of
θ=π ¼ 0.25 for N ¼ 3 up to 8 as a function of the angular
momentum l − l0. For all N one can clearly identify a
branch of chiral excitations propagating to the right. The
analytical predictions are indicated by the dimensions of
the SUðNÞ irreducible representations. For allN the numeri-
cal data for the first three sectors (l − l0 ¼ 0, 1, 2) are in full
agreement with the analytical predictions. The splitting
between the multiplets at a given value of l is expected to
vanish as Ns grows, and the spectrum should become linear
with a certain edge state velocity. The observed structure of
the edge excitations confirms the SUðNÞ1 WZNW CFT
predictions and thus strengthens the case for Abelian
SUðNÞ CSLs in the model Hamiltonian Eq. (3).
Experimental considerations.—With the recent realiza-

tion of the Mott-crossover regime in 3D optical lattices with
fermionic Ytterbium atoms [64,65] the future for strongly
correlated SUðNÞ quantum magnetism is shining bright.
Our proposal for triangular lattices builds on ingredients
that have been demonstrated separately: the possibility to
realize Mott insulators in optical lattices, and to create
static artificial gauge fields in an optical lattice (for alkaline
atoms) [66,67]. Besides, working with the triangular lattice
is a big advantage because the 3-site permutation term is the
first and only term to appear to third order in perturbation
theory starting from the Hubbard model with one particle
per site, by contrast to, e.g., the square and honeycomb
lattice, where they appear at order 4 and 6, respectively, and
are not the first corrections. The chiral phase typically
appears for θ≃ 0.3, which, using the perturbation expres-
sions of J ¼ 2t2=U and K3 ¼ 6t3=U2, corresponds to
t=U ≃ 0.1. This might be small enough to be still in the

FIG. 4. Edge states in SUðNÞ CSLs: the leftmost panel displays the Ns ¼ 19 site triangular cluster with open boundary conditions
used. In the various other panels we exhibit the low energy spectrum as a function of the angular momentum around the central site (l0
denotes the ground state angular momentum). The chiral edge states are clearly visible, with a characteristic SUðNÞ multiplet structure,
which corresponds to a particular sector of a chiral SUðNÞ1 Wess-Zumino-Novikov-Witten conformal field theory. The analytical
predictions are indicated by the dimensions of the SUðNÞ multiplets and can be found in Table I of the Supplemental Material [37].
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Mott insulating phase, and to ensure that higher order
corrections are negligible. In future studies one might also
relax the π=2 flux per plaquette condition, and explore the
extent of the expected stability region of the SUðNÞ CSL
phases.
Several interesting questions need to be addressed in

future work. For example, is it possible to directly engineer
the required three site exchange terms in Hamiltonian
Eq. (3) using sophisticated quantum optics schemes?
There is hope that the current activity on lattice gauge-
theory implementations will bring techniques to address
this question. Another intriguing question regards the
detection of SUðNÞ CSL edge states in actual experiments,
using for example spectroscopic techniques for small
droplets or braiding protocols for the Abelian anyons [27].
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7
SU(N) J-Q model on the square lattice with multi-column

representations

Topfpflanzen, bitte gehts spazieren.
Josef Hader, Topfpflanzen, Hey!

Abstract

In this preliminary Quantum Monte Carlo study, we consider the antiferromagnetic SU(N)
Heisenberg model with an additional four-spin term, often called the J-Q model [97]. We
allow for representations of SU(N) with a single row and multiple columns, corresponding
to higher spin-S in the SU(2) Heisenberg model. This model is expected to exhibit a
phase transition from a Néel state to a valence bond solid (VBS) state in two dimensions,
where the VBS state in the four-column representation is a putative symmetry-protected
topologically (SPT) ordered state. We show results on the evaluation of the strange corre-
lator for the detection of SPT order in one dimension and investigate the two-dimensional
“Q-only” model with only four-spin interactions. We give an estimate of the critical value
Ncrit for the transition to the VBS state in the Q-only model.

7.1. Introduction

Exotic new states of matter, such as quantum spin liquids, may arise in strongly inter-
acting systems when fluctuations of local moments become dominant and determine the
behavior of the system [89]. Apart from geometrical frustration or low-dimensionality,
higher local symmetry may also increase quantum fluctuations. This was proposed by
Read and Sachdev [226, 227], who suggested investigating generalizations of the Heisen-
berg model with internal SU(2) symmetry to a larger symmetry group, SU(N). In the
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antiferromagnetic SU(2) case, the ground state is Néel ordered for bipartite lattices [55].
However, Read and Sachdev [226, 227] showed that in the N → ∞ limit a valence bond
solid (VBS) state is realized and gave an estimate at which value N a phase transition
can be expected, depending on the representation of SU(N) chosen at every site. Numeri-
cally, these values have been determined exactly by recent Quantum Monte Carlo (QMC)
studies for the square lattice [228–230].

Different local representations correspond to different values of the spin-S in the SU(2)
case. Irreducible representations of SU(N) are typically described by their Young di-
agrams. Here, we only consider the symmetric representations with a single row and
multiple columns. The number of columns is denoted by nc. The exact form of this VBS
in the N → ∞ limit is determined by the representation of SU(N) chosen locally [226,
227]. For the two-dimensional square lattice, the value of nc (mod 4) decides which kind of
VBS is realized. If nc = 1, 3 (mod 4) a columnar VBS is realized, nc = 2 (mod 4) yields a
nematic VBS. Interestingly, the case nc = 0 (mod 4) admits a spin disordered state without
spontaneous symmetry breaking but with possible symmetry-protected topological (SPT)
order. This may be considered as a two-dimensional analog of the famous Haldane phase
in the spin-1 Heisenberg chain [231]. SPT order has recently also attracted attention in
the field of measurement-based quantum computation, where several SPT states in two
dimensions have been proven to allow for universal quantum computation [232, 233]. As
of today, only few examples of two-dimensional SPT phases emerging from local, interact-
ing models are known [234, 235], and often these models feature complicated interactions.
Hence, providing evidence for the emergence of this kind of ordering in a simple local
model would be highly desirable.

For detecting SPT order in one and two dimensions, the so-called strange correlator has
been proposed recently [236]. Essentially, studying its behavior allows for differentiating
between trivial short-range entangled states and non-trivial SPT phases. The strange
correlator has already been evaluated numerically for the Haldane spin-1 chain [237],
where a saturation of the strange correlator to a constant value is observed. Ultimately,
we are interested in computing the strange correlator for the two-dimensional possibly
SPT-ordered VBS state. In section 7.3 we show numerical results from QMC on the
evaluation of the strange correlator for the generalized SU(N) chain in the two-column
representation. For N = 2 this corresponds to the original Haldane chain.

To study the nature of the phase transition between an ordered Néel state and a VBS
state a continuous parameter would be desirable. The parameter N is essentially discrete.
Although a generalization to continuous N has been proposed [238], another route of
inducing a phase transition is to add further interaction terms that favor VBS states. In
this context, the so-called J-Q model with an additional four-site exchange term has been
proposed [97]. Moreover, the phase transition between the Néel state and the VBS state
in the model is expected to provide an example of deconfined criticality [216, 239], a novel
exotic kind of quantum phase transition beyond Landau’s theories.
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7.2. Model

Figure 7.1.: Interactions of the J-Q
model. The Q-terms are de-
fined on pairs of neighbor-
ing sites on the elementary
square plaquettes of the lat-
tice.

We are thus interested in the J-Q models for generalized SU(N) interactions in two
dimensions. In section 7.4 we present results on the Q-only model on the square lattice for
the SU(N) representations with nc = 1, 2, 3, 4. We compute spin correlations using QMC
to differentiate between ordered and disordered states. This preliminary study shows, for
which values of N a phase transition between the Néel state and the VBS states may be
observed using QMC simulations.

7.2. Model

We are interested in studying the SU(N) antiferromagnetic Heisenberg model with an
additional four-spin term,

H = −J
∑
〈ij〉

Bij −Q
∑

(ij)(kl)
BijBkl. (7.2.1)

The second sum runs over pairs of nearest-neighbor bonds on an elementary square pla-
quette of the lattice as shown in Fig. 7.1. The operator Bij is the generalization of the
Heisenberg operator for SU(2) and is defined by

Bij = − 1
N

N∑
α,β=1

Sαβi S̃βαj . (7.2.2)

Here, the operators Sαβi denote generators of the SU(N) algebra, satisfying the commu-
tation relations,

[Sαβi , Sµνj ] = δij(δβµSανi − δανS
µβ
i ). (7.2.3)

The model is considered for different representations of the generators Sαβi , corresponding
to higher spin-S in Heisenberg SU(2) models. Moreover, for bipartite lattices there are
two choices for the Heisenberg operator Bij . We can either choose the same representation
of generators on each sublattice or choose the conjugate representation,

S̃αβi = −Sβαi , (7.2.4)

on one of the two sublattices. The latter choice is then called the antiferromagnetic
Heisenberg SU(N) operator, as opposed to the ferromagnetic Heisenberg SU(N) oper-
ator with the same representation on all sublattices [61]. The antiferromagnetic model
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is sign-problem free and can, therefore, be efficiently simulated with QMC techniques.
We note, that the Heisenberg SU(N) model considered in chapter 6 can be considered
as the ferromagnetic Heisenberg model in the fundamental represenation1. A convenient
method of constructing symmetric representations2 of the SU(N) algebra is given by the
Schwinger-boson construction [240]. Let

aiα, a
†
iα, α = 1, . . . , N, (7.2.5)

be bosonic operators fulfilling the canonical commutation relations and set

Sαβi = a†iαaiβ. (7.2.6)

The operators Sαβi satisfy the SU(N) commutation relations Eq. (7.2.3) and conserve the
total number of bosons per site,

N∑
α=1

a†iαaiα ≡ nc = 1, 2, . . . . (7.2.7)

These operators are now used to derive the representation matrices for the symmetric
representations of SU(N) on the finite dimensional spaces with fixed number of Schwinger-
bosons. The representation with nc = 1 corresponds to the fundamental representation. In
general, the representation on the subspace with nc bosons corresponds to the symmetric
representation of SU(N) with a Young diagram with a single row and nc columns.

7.3. Strange correlator of SU(N) Heisenberg chains

For detecting SPT phases in one and two dimensions the behavior of so-called the strange
correlator can be investigated. It is defined between two real-space coordinates r and r′
by [236]

C(r, r′) = 〈Ω|φ(r)φ(r′)|Ψ0〉
〈Ω|Ψ0〉

, (7.3.1)

where φ(r) is some local operator. Here, |Ψ0〉 denotes the wave function under investiga-
tion, such as, for example, a ground state wave function. |Ω〉 denotes a SPT-trivial state
with short-range correlations, such as a product state of the form

|Ω〉 =
Ns⊗
i=1
|σi〉 , (7.3.2)

where Ns denotes the number of lattice sites and |σi〉 a state for a local spin. According
to Ref. [236], for a gapped, non-trivial short-range entangled state, C(r, r′) will either

1The term ferromagnetic can be confusing here. A ferromagnetic SU(N) Heisenberg bond with negative
coupling constant actually induces antiferromagnetic correlations and vice versa.

2By symmetric representations we denote the single row, multiple column representations of SU(N).
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Figure 7.2.: Strange correlator C(r) = C(r,0) as in Eq. (7.3.8) for the SU(N) antifer-
romagnetic Heisenberg chain on a 64-site chain lattice in the nc = 2 repre-
sentation. The case N = 2 corresponds to the Heisenberg spin-1 chain. The
imaginary time in Eq. (7.3.8) is set to τ = 100. For all values of N con-
sidered, the strange correlator saturates to a constant, indicating SPT order.
The error bars represent the standard errors.

converge to a constant or show algebraic decay for |r − r′| → ∞ in one and two dimen-
sions. Gapped, SPT-trivial states are expected to exhibit exponential decay of the strange
correlator. The strange correlator has been evaluated exactly for various relevant model
wavefunctions in Refs. [236, 237, 241].

We consider the SU(N) antiferromagnetic Heisenberg model as in Eq. (7.2.1) without
a Q-term on a one-dimensional chain lattice. We choose periodic boundary conditions.
Although in one dimension also several other order parameters exist for detecting non-
trivial SPT order [242–244], we compute the strange correlator for the SU(N) general-
ization of the spin-1 Heisenberg chain. Essentially, the string order parameters proposed
by Refs. [242–244] do not allow for a straightforward generalization in two dimensions.
The strange correlator for the ground state of a system can be computed by QMC using
a ground state projector technique, as demonstrated by Ref. [237]. There, the strange
correlator for the SU(2) spin chain with spin S = 1 has successfully been computed. The
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local operator φ has been chosen as the off-diagonal exchange operator,

φ(r)φ(r′) = 1
2(S+

r S
−
r′ + S−r S

+
r′), (7.3.3)

and the trivial product state as

|Ω〉 =
Ns⊗
i=1
|0〉 . (7.3.4)

For the generic SU(N) case, we consider the off-diagonal local operators,

φ(r)φ(r′) = O
rr′ = 1

N

∑
α 6=β

Sαβr Sβαr′ , (7.3.5)

and the product states

|Ω〉 = |Ω0〉 =
Ns⊗
i=1
|σi〉 , where |σi〉 = a†0a

†
1 |∅〉 . (7.3.6)

a†i denote the Schwinger-boson operators as in Eq. (7.2.6). Note, that the state a†0a
†
1 |∅〉 in

the Schwinger-boson representation corresponds to the state |0〉 in the Sz basis for SU(2).
For an arbitrary wave function |Ω0〉, not orthogonal to the true ground state 〈Ψ0|Ω0〉 6=

0, the imaginary time evolved state,

exp(−τH) |Ω0〉 → |Ψ0〉 for τ →∞, (7.3.7)

converges to the ground state |Ψ0〉 of H. τ denotes the imaginary time variable. Hence,
we consider the following strange correlator:

C(r) = lim
τ→∞

〈Ω|Or0 exp(−τH)|Ω0〉 / 〈Ω| exp(−τH)|Ω0〉 . (7.3.8)

This quantity agrees with Eqs. (7.3.3) and (7.3.4) for N = 2 and can be evaluated for finite
τ using the world-line QMC technique. For an introduction and review see [245, 246].
We employ a non-reversible worm algorithm in the continuous imaginary time integral
representation [126, 247, 248]. We extended an existing implementation available at [249]
to the generic SU(N) case. In order to simulate representations with multiple columns, we
apply a variant of the algorithm proposed in Ref. [138]. The results of our computations
are shown in Fig. 7.2. We thermalized the system with 107 QMC sweeps and measured
108 sweeps. Convergence in imaginary time has been confirmed, also by investigating two
different states |Ω0〉 at τ = 0. On small lattices, we compared our results to numerically
exact data from Exact Diagonalization. We find, that the strange correlator for higher
N also saturates to a constant value. For gapped systems, this implies SPT order. We
computed conventional spin correlation functions which clearly exhibit an exponential
decay in the correlation function for small values of N 3. This indicates a gapped state,
which together with the long-ranged strange correlator implies SPT-order also for higher
values of N .

3The spin correlation functions decay faster for higher values of N . Hence, differentiating between alge-
braic and exponential decay becomes challenging due to finite statistical errors.
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7.4. Spin disordered states in Q-only model

2 4 6 8 10 12 14 16 18 20

Q-only J-only

N

Néel

VBS

(a) (b)

Figure 7.3.: (a): Supposable phase diagram of the Q-only model and the J-only model.
(b): Summed spin correlation functions Smag(r) of the Q-only model on a
16× 16 square lattice as defined in Eq. (7.4.3) for nc = 2 across the diagonal
of a 16 × 16 square lattice. Asymptotic linear behavior is expected for long-
range order whereas convergence to a constant is due to exponential (or fast
algebraic) decay. The error bars represent the standard errors.

7.4. Spin disordered states in Q-only model

We now consider the two-dimensional square lattice case. In order to finally establish
the full phase diagram of the model Eq. (7.2.1) we here consider the extremal points
J = 1, Q = 0 and J = 0, Q = 1. The pure Heisenberg case J = 1, Q = 0 has already been
studied for nc = 1, 2, 3 by Refs. [228–230]. Their findings suggest that a disordered state
is stablilized for N = 5 if nc = 1, N = 10 if nc = 2 and likely N = 15 if nc = 3. This
agrees well with the analytical estimate by Read and Sachdev [226, 227] who proposed a
critical value nc/Ncrit = 0.19 in the nc → ∞ limit. This prediction yields a critical value
of N ≈ 20 for nc = 4.

The full SU(N) J-Q model for nc = 1 and N = 2, 3, 4 has been investigated in Ref. [250].
The points of phase transition for the parameter

q ≡ Q/(J +Q) (7.4.1)

between the Néel state and the VBS state have been determined using QMC. The critical
values found are qcrit = 0.9585 for N = 2, qcrit = 0.3353 for N = 3 and qcrit = 0.0829 for
N = 4.

In this preliminary study, we now considered the Q-only version of Eq. (7.2.1) with
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J = 0, Q = 1. We computed the diagonal spin correlations,

Cmag(r) = 1
N
〈
N∑
α=1

Sααr Sαα0 〉 , (7.4.2)

across the diagonal of a L × L = 16 × 16 square lattice for nc = 1, 2, 3, 4. To differen-
tiate between long-range order and exponential (or fast algebraic) decay we consider the
summed correlations,

Smag(r) =
r∑

r′=0
Cmag(r′). (7.4.3)

Our results for the case nc = 2 are shown in Fig. 7.3b. For our simulation, we used
105 thermalization sweeps and 106 measurement sweeps. The temperature has been set
to T = 1/L = 1/16. Long-range order implies an asymptotic linear growth of Smag(r),
whereas saturation to a constant value suggests exponential (or fast algebraic) decay. We
find long-range order for N ≤ 3 if nc = 2. Further preliminary computations suggest
Néel order for N ≤ 5 if nc = 3 and N ≤ 7 if nc = 4. These findings are summarized
in Fig. 7.3a. Nevertheless, in order to determine the exact critical value Ncrit a more
refined analysis should be performed. Especially, the system size dependence of the spin
correlations should be investigated in a further study. Our results implicate, that a phase
transition between a Néel ordered state and a VBS state with the continuous parameter
q = Q/(J +Q) should be observable in the blue region in Fig. 7.3a.

7.5. Conclusion and Outlook

We considered the antiferromagnetic J-Qmodel for generalized SU(N) spins with multiple-
column representations. As a preparational step, we measured the strange correlator using
world-line QMC for the SU(N) generalization of the Heisenberg spin-1 chain, exhibiting
SPT order in one dimension. We then showed first results on the spin correlation functions
of the Q-only model on the two-dimensional square lattice. Our results yield an approx-
imate phase diagram for the number of columns nc of the SU(N) representation and the
value N .

In order to consolidate our results, we will compute the spin correlations of the Q-only
model also for different system sizes. Furthermore, the phase transition from the Néel
phase to the VBS state for varying the parameter q = Q/(J + Q) will be investigated
in a further study. Moreover, computing nematic and columnar order parameters as in
Ref. [230] could determine the nature of the VBS states for nc = 1, 2, 3. The case nc = 4 is
of particular interest since it supposedly exhibits SPT order in two dimensions. To provide
evidence for this kind of order, the strange correlator can be evaluated, as performed for
the one-dimensional case in this chapter.

110



7.5. Conclusion and Outlook

Acknowledgements

I am very grateful to Synge Todo for accepting me as an exchange student in his group
to work on this project. I greatly enjoyed the hospitality of him and his group during my
stay as well as the scientific collaboration. I would also like to especially thank Hidemaro
Suwa for discussions and help with the QMC method. Moreover, I am very grateful
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Words are flowing out
Like endless rain into a paper cup

They slither while they pass
They slip away across the universe.

The Beatles, Across The Universe

The development and implementation of several numerical methods allowed us to inves-
tigate interesting problems in frustrated quantum magnetism. The Exact Diagonalization
code employing sublattice coding techniques and distributed memory parallelization pre-
sented in chapter 3 allowed for numerically exact evaluation of ground state properties
with system sizes up to 50 spin-1/2 particles, so far the largest feasible system size.

Using this software we were able to provide conclusive evidence for the emergence of
chiral spin liquids in several two-dimensional frustrated quantum magnets in chapters 4
to 6 (Refs. [140, 182, 185]). Moreover, we established approximate phase diagrams in these
models and investigated the nature of the phase transitions. Especially, we proposed a
scenario for the J1-J2 model on the triangular lattice where a Dirac spin liquid might
describe the quantum critical point of the transition from the 120◦ Néel ordered state to
a putative Z2 spin liquid. Our findings on the chiral spin liquids on the triangular lattice
have also recently been confirmed by an independent DMRG study [251].

We employed energy level spectroscopy (see Appendix B and Ref. [57]) methods, directly
computed ground state properties from ED and compared with model spin liquid wave
functions derived from Gutzwiller projection, cf. section 2.2. To investigate properties of
the Gutzwiller projected wave functions also a Variational Monte Carlo simulation code
has been developed.

The methods we developed are now readily applicable to various other problems. As an
extension of the projects in chapters 4 to 6, where the emergence of an Abelian SU(2)1
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(resp. SU(N)1) chiral spin liquid was shown, it would be interesting to investigate systems
possibly realizing non-Abelian topological order. Various candidate systems have already
been proposed [168, 252–254]. In the course of these projects, it might be interesting also
to compute modular matrices of the ground state manifold [255, 256] or Wilson Loop
observables (see e.g. [257]).

Dynamical properties of frustrated magnets are often directly accessible in experiments.
The dynamical spin structure factor of a sample, for example, can be measured by Neutron
scattering experiments [50]. It would, therefore, be desirable to compare measurements
in the laboratory to numerical data derived from a model Hamiltonian. For this purpose,
the Exact Diagonalization software can be extended by implementing the continuous frac-
tion expansion method [258]. Moreover, to study non-equilibrium dynamics of quantum
magnets, time evolution of wave functions can also be implemented by Krylov subspace
methods [259, 260].

Another important direction of research is to investigate experimental signatures of chi-
ral spin liquids. Examples include the quantized spin Hall conductivity measurements [261]
or thermal Hall conductivity measurements [262]. The spin Hall conductivity can be ob-
tained by computing the many-body Chern number [261]. A similar topological invariant
for the thermal Hall conductivity is not known so far. Yet, the behavior of the system
at low temperatures may be predicted by investigating boundary modes [263]. Hence,
a comparison of thermal conductivities derived numerically from the Kubo formula with
these analytical results would be highly interesting. Moreover, certain dynamical signa-
tures for topological order have been proposed [264] and a numerical investigation of those
processes could yield new insight into the dynamical behavior of quantum spin liquids.

Experimentally, several materials have been found as candidates for realizing spin liquid
behavior. First-principle calculations are often capable of providing approximate low-
energy effective Hamiltonians for these systems, see e.g. [265]. Recently, studies on the
compound α-RuCl3 suggested a possible spin liquid behavior at low temperatures [266,
267] and effective Hamiltonians have been derived [268]. Also, effective Hamiltonians
for Herbertsmithite including Dzyaloshinskii-Moriya interactions have been proposed and
investigated [269]. Applying energy level spectroscopy and evaluation of ground state
properties from Exact Diagonalization might yield novel insights for these systems.

The preliminary results on the SU(N) Heisenberg models on the square lattice with an
additional four-site Q-term in chapter 7 suggest a phase transition from a long-range Néel
ordered state to a paramagnetic state. In the case of the fundamental representation of
SU(N) it has already been shown that the disordered state is a Valence Bond solid [270].
For the representations with multiple columns, we still need to evaluate observables to
precisely determine their nature. Also, the critical point separating those phases can be
evaluated by further computations. The four-column case is expected to exhibit symmetry
protected topological order [230]. This kind of order has rarely been observed in local
models in two dimensions. We plan on establishing this order by computing the strange
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correlator [236, 237] in this system, as already done in chapter 7 for the case of the SU(N)
Haldane chains.

During this thesis many tools have been developed in collaboration with Michael Schuler
for constructing lattice geometries and models, computing their symmetries and visualiz-
ing the results of numerical computations, such as energy spectra or correlation functions.
Also, parsers for several formats of data structures common in quantum many-body com-
putations have been written. This collection Python scripts has been put into a form of
a Python package and is by now well documented. It also includes a flexible Exact Di-
agonalization code as a C++ extension which can be used in a user-friendly and didactic
way. We think that these tools might be of broader interest to the numerical community
and plan on making the source code publicly accessible as an open-source code called
QuantiPy.
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Appendices A and B are part of lecture notes for the autumn school Quantum Materials:
Experiments and Theory held at Forschungszentrum Jülich form 12. - 16. September
2016. The full manuscript is available as:

Alexander Wietek, Michael Schuler, and Andreas M. Läuchli. “Studying Continuous Sym-
metry Breaking using Energy Level Spectroscopy”. In: arXiv E-prints (2017). arXiv:
1704.08622 [cond-mat.str-el]
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A
Representation theory for space groups

For finite discrete groups such as the space group of a finite lattice the full set of irreducible
representations (irreps) can be worked out. Let us first discuss some basic groups. Let’s
consider a n × n square lattice with periodic boundary conditions and a translationally
invariant Hamiltonian like the Heisenberg model on it. In the following we will set the
lattice spacing to a = 1. The discrete symmetry group we consider is T = Zn × Zn
corresponding to the group of translations on this lattice. This is an Abelian group of
order n2. Its representations can be labeled by the momentum vectors k = (2πi

n ,
2πj
n ),

i, j ∈ {0, · · · , n − 1} which just correspond to the reciprocal Bloch vectors defined on
this lattice. Put differently, the vectors k are the reciprocal lattice points of the lattice
spanned by the simulation torus of our n × n square lattice. The character χk of the
k-representation is given by

χk(t) = eik·t (A.0.1)

where t ∈ T is the vector of translation. This is just the usual Bloch factor for transla-
tionally invariant systems.

Let us now consider a (symmorphic) space group of the form D = T ×PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on a
n×n square lattice this could for example be the dihedral group of order 8, D4, consisting
of fourfold rotations together with reflections. The representation theory and the character
tables of these point groups are well-established. An example for such character tables
can be found in Tab. A.1 for the dihedral group D6

1. Since D is now a product of the
translation and the point group we could think that the irreducible representations of
D are simply given by the product representations (k ⊗ ρ) where k labels a momentum
representation and ρ an irrep of PG. But here is a small yet important caveat. We have
to be careful since D is only a semidirect product of groups as translations and pointgroup
symmetries do not necessarily commute. This alters the representation theory for this

1We follow the labeling scheme for point group representations according to Mulliken [271].
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A. Representation theory for space groups

D6 1 2C6 2C3 C2 3σd 3σv
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

Table A.1.: Character table for pointgroup D6.

product of groups and the irreps of D are not just simply the products of irreps of T and
PG. Instead the full set of irreps for this group is given by (k ⊗ ρk) where ρk is an irrep
of the so called little group Lk of k defined as

Lk = {g ∈ PG; g(k) = k} (A.0.2)

which is just the stabilizer of k in PG. For example, all pointgroup elements leave k = (0, 0)
invariant, thus the little group of k = (0, 0) is the full pointgroup PG. In general, this does
not hold for other momenta and only a subgroup of PG will be the little group of k. In
Fig. B.1 we show the k-points of a 6 × 6 triangular lattice together with its little groups
as an example. The K point in the Brillouin zone has a D3 little group, the M point a D2
little group. Having discussed the represenation theory for (symmorphic) space groups we
state that the characters of these representations are simply given by

χ(k,ρk)(t, p) = eik·tχρk(p) (A.0.3)

where t ∈ T , p ∈ PG and χρk denotes the character of the representation ρk of the little
group Lk.
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B
Tower of States analysis

Symmetry analysis

In the analysis of excitation spectra from Exact Diagonalization on finite size simulation
clusters the tower of states analysis, short TOS, is a powerful tool to detect spontaneous
symmetry breaking. As we have seen in section 1.1.1 explicitly for the Heisenberg anti-
ferromagnet, symmetry breaking implies degenerate ground states in the thermodynamic
limit. On finite size simulation clusters this degeneracy is in general not an exact degen-
eracy. We rather expect a certain scaling of the energy differences in the thermodynamic
limit. We distinguish two cases:

• Discrete symmetry breaking: In this case we have a degeneracy of finitely many
states in the thermodynamic limit. The ground state splitting ∆ on finite size
clusters scales as ∆ ∼ exp(−N/ξ), where N is the number of sites in the system.

• Continuous symmetry breaking: The ground state in the thermodynamic limit
is infinitely degenerate. The states belonging to this degenerate manifold collapse as
∆ ∼ 1/N on finite size clusters as we have seen in section 1.1.1. It is important to
understand that these states are not the Goldstone modes of continuous symmetry
breaking. Both the degenerate ground state and the Goldstone modes appear as low
energy levels on finite size clusters but have different scaling behaviours.

The scaling of these low energy states can now be investigated on finite size clusters.
More importantly also their quantum numbers such as momentum, pointgroup represen-
tation or total spin can be predicted [204, 205, 272]. The detection of correct scaling
behaviour together with correctly predicted quantum numbers yields very strong evidence
that the system spontaneously breaks symmetry in the way that has been anticipated.
This is the TOS method. In the following we will discuss how to predict the quantum
numbers for discrete as well as continuous symmetry breaking. The main mathematical
tool we use is the character-formula from basic group representation theory.
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B. Tower of States analysis

Lattice Hamiltonians like a Heisenberg model often have a discrete symmetry group
arising from translational invariance, pointgroup invariance or some discrete local sym-
metry, like a spinflip symmetry. In this chapter we will first discuss the representation
theory and the characters of the representations of space groups on finite lattices. We will
then see how this helps us to predict the representations of the degenerate ground states
in discrete as well as continuous symmetry breaking.

Predicting irreducible representations in spontaneous symmetry breaking

Spontaneous symmetry breaking at T = 0 occurs when the ground state |ψGS〉 of H in the
thermodynamic limit is not invariant under the full symmetry group G of H. We will call
a specific ground state |ψGS〉 a prototypical state and the ground state manifold is defined
by

VGS = span
{
|ψiGS〉

}
(B.0.1)

where |ψiGS〉 is the set of degenerate ground states in the thermodynamic limit. This
ground state manifold space can be finite or infinite dimensional depending on the situ-
ation. For breaking a discrete finite symmetry this ground state manifold will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry1 as in section 1.1.1 it
is infinite dimensional in the thermodynamic limit. For every symmetry g ∈ G we denote
by Og the symmetry operator acting on the Hilbert space. The ground state manifold
becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the ground states in this manifold. Another way of saying this is that we want
to compute the irreducible representations of G to which the ground states belong to. For
this we look at the action Γ of the symmetry group G on VGS defined by

Γ :G → Aut(VGS) (B.0.2)

g 7→
(
〈ψiGS|Og|ψ

j
GS〉

)
i,j

(B.0.3)

This is a representation of G on VGS, so every group element g ∈ G is mapped to an
invertible matrix on VGS. In general this representation is reducible and can be decomposed
into a direct sum of irreducible representations

Γ =
⊕
ρ

nρρ (B.0.4)

These irreducible representations ρ are the quantum numbers of the eigenstates in the
ground state manifold and nρ are its respective multiplicities (or degeneracies). Therefore
these irreps constitute the TOS for spontaneous symmetry breaking [204]. To compute

1The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only
consider the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices
with even number of sites (corresponding to integer total sublattice spin).

124



the multiplicities we can use a central result from representation theory, the character
formula

nρ = 1
|G|

∑
g∈G

χρ(g) Tr(Γ(g)) (B.0.5)

where χρ(g) is the character of the representation ρ and Tr(Γ(g)) denotes the trace over
the representation matrix Γ(g) as defined in Eq. (B.0.2). Often we have the case that

〈ψGS|Og|ψ′GS〉 =

1 if Og |ψ′GS〉 = |ψGS〉
0 otherwise

(B.0.6)

With this we can simplify Eq. (B.0.5) to what we call the character-stabilizer formula

nρ = 1
|Stab(|ψGS〉)|

∑
g∈Stab(|ψGS〉)

χρ(g) (B.0.7)

where
Stab(|ψGS〉) ≡ {g ∈ G : Og |ψGS〉 = |ψGS〉} (B.0.8)

is the stabilizer of a prototypical state |ψGS〉 2. We see that for applying the character-
stabilizer formula in Eq. (B.0.7) only two ingredients are needed:

• the stabilizer Stab(|ψGS〉) of a prototypical state |ψGS〉 in the ground state manifold

• the characters of the irreducible representations of the symmetry group G

We want to remark that in the case of G = D × C where D is a discrete symmetry group
such as the spacegroup of a lattice and C is a continuous symmetry group such as SO(3)
rotations for Heisenberg spins the Eqs. (B.0.5) and (B.0.7) include integrals over Lie groups
additionally to the sum over the elements of the discrete symmetry group D. Furthermore
also the characters for Lie groups like SO(3) are well-known. For an element R ∈ SO(3)
the irreducible representations are labeled by the spin S and its characters are given by

χS(R) =
sin
[
(S + 1

2)φ
]

sin φ
2

(B.0.9)

where φ ∈ [0, 2π] is the angle of rotation of the spin rotation R.

2In some cases, the orbit of the prototypical state G. |ψGS〉 = {g ∈ G : Og |ψGS〉} does not span the
full set of degenerate ground states |ψiGS〉. In this case, we have to find a set of prototypical states
with different orbits, such that the union of these orbits spans the full ground state manifold. Then,
Eq. (B.0.7) has to be applied to each prototypical state, individually, and the final multiplicity is the
sum of the individual results.
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B. Tower of States analysis

SU(2) symmetry breaking in square Heisenberg model

We now give a first example how the TOS method can be applied to predict the structure
of the tower of states for magnetically ordered phases. We look at the Néel state of the
antiferromagnet on the bipartite square lattice with sublattices A and B. A prototypical
state in the ground state manifold is given by

|ψ〉 = |↑↓↑↓ · · ·〉 (B.0.10)

where all spins point up on sublattice A and down on sublattice B. The symmetry group
G = D×C of the model we consider is a product between discrete translational symmetry
D = Z2 × Z2 = {1, tx, ty, txy} and spin rotational symmetry C = SO(3). We remark that
we restrict our translational symmetry group to D = Z2 × Z2 instead of D′ = Z × Z
because the Néel state transforms trivially under two-site translations (tx)2, (ty)2. Thus,
only the representations of D′ trivial under two-site translations are relevant; these are
exactly the representations of D. Put differently we only have to consider the translations
in the unitcell of the magnetic structure which in the present case can be chosen as a
2-by-2 cell. Furthermore, we will for now neglect pointgroup symmetries like rotations
and reflections of the lattice to simplify calculations. At the end of this section we give
results where also these symmetry elements are incorporated.

The ground state manifold VGS we consider are the states related to |ψ〉 by an element
of the symmetry group G, i.e.

VGS = {Og |ψ〉 ; g ∈ G} (B.0.11)

The symmetry elements in G that leave our prototypical state |ψ〉 invariant are given by
two sets of elements:

• No translation in real space or a diagonal txy translation together with a spin rotation
Rz(α) around the z-axis with an arbitrary angle α.

• Translation by one site, tx or ty, followed by a rotation Ra(π) of 180◦ around an axis
a ⊥ z perpendicular to the z-axis.

So the stabilizer of our prototype state |ψ〉 is given by

Stab(|ψ〉) = {1×Rz(α)} ∪ {txy ×Rz(α)} ∪ {tx ×Ra(π)} ∪ {ty ×Ra(π)} (B.0.12)

The representations of the discrete symmetry group can be labeled by four momenta
k ∈ {(0, 0), (0, π), (π, 0), (π, π)} with corresponding characters

χk(t) = eik·t
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where t denotes the translation vector corresponding to t. The continuous symmetry
group we consider is the Lie group SO(3). Its representations are labeled by the total spin
S. The character of the spin-S representation is given by

χS(R) =
sin
[
(S + 1

2)φ
]

sin φ
2

where φ ∈ [0, 2π] is the angle of rotation of the element R ∈ SO(3). We see that spin
rotations with different axes but same rotational angle give rise to the same character.
The representations of the total symmetry group G = D × C are now just the product
representations of D and C. Therefore also the characters of representations of G are
the product of characters of D and C. We label these representations by (k, S) where k
denotes the lattice momentum and S the total spin. To derive the multiplicities of the
representations (k, S) in the ground state manifold, we now apply the character-stabilizer
formula, Eq. (B.0.7). In the case of the square antiferromagnet this yields

n(k,S) = eik·0
1

4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) + eik·(ex+ey) 1
4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) (B.0.13)

+ eik·ex
1

4 |Ra(π)|

2π∫
0

daχS(Ra(π)) + eik·ey
1

4 |Ra(π)|

2π∫
0

daχS(Ra(π)) (B.0.14)

We compute

|Rz(α)| = |Ra(π)| =
2π∫
0

dφ = 2π

1
2π

2π∫
0

dαχS(Rz(α)) = 1
2π

2π∫
0

dα
sin
[
(S + 1

2)α
]

sin α
2

= 1
2π

2π∫
0

dα
S∑

l=−S
eilα = 1 (B.0.15)

and
1

2π

2π∫
0

daχS(Ra(π)) = 1
2π

2π∫
0

da
sin
[
(S + 1

2)π
]

sin π
2

= (−1)S (B.0.16)

Putting this together gives the final result for the multiplicities of the representations in
the tower of states

n((0,0),S) = 1
4
(
1 · 1 + 1 · 1 + 1 · (−1)S + 1 · (−1)S

)
=
{

1 if S even
0 if S odd (B.0.17)

n((π,π),S) = 1
4
(
1 · 1 + 1 · 1− 1 · (−1)S − 1 · (−1)S

)
=
{

0 if S even
1 if S odd (B.0.18)

n((0,π),S) = 1
4
(
1 · 1− 1 · 1 + 1 · (−1)S − 1 · (−1)S

)
= 0 (B.0.19)

n((π,0),S) = 1
4
(
1 · 1− 1 · 1− 1 · (−1)S + 1 · (−1)S

)
= 0 (B.0.20)
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B. Tower of States analysis

Tab. B.1 lists the computed multiplicities of the irreducible representations where addi-
tionally the D4 point group was considered in the symmetry analysis. These irreps and
their multiplicities exactly agree with the irreps and multiplicities in the TOS of the square
lattice Heisenberg model from ED in Fig. 1.3. The spectroscopic predictions together with
the numerical data thus constitute a firm and solid evidence of Néel order.

S Γ.A1 M .A1
0 1 0
1 0 1
2 1 0
3 0 1

Table B.1.: Multiplicities of irreducible representations in the TOS for the Néel Antiferro-
magnet on a square lattice.

Magnetic order in triangular lattice geometries

On the triangular lattice several magnetic orders can be stabilized. The Heisenberg nearest
neighbour model has been shown to have a 120◦ Néel ordered ground state where spins on
neighbouring sites align in an angle of 120◦ [80, 81]. Upon adding further second nearest
neighbour interactions J2 to the Heisenberg nearest neighbour model with interaction
strength J1 it was shown that the ground state exhibits stripy order for J2/J1 & 0.18 [82].
Here spins are aligned ferromagnetically along one direction of the triangular lattice and
antiferromagnetically along the other two. Interestingly, it was shown that a phase exists
between these two magnetic orders whose exact nature is unclear until today. Several
articles propose that in this region an exotic quantum spin liquid is stabilized [113, 195, 196,
198]. In a recent proposal two of the authors established an approximate phase diagram of
an extended Heisenberg model with further scalar chirality interactions JχSi·(Sj×Sk) [182]
on elementary triangles. The Hamiltonian of this model is given by

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj + Jχ
∑

i,j,k∈4
Si · (Sj × Sk) (B.0.21)

Amongst the already known 120◦ Néel and stripy phases an exotic Chiral Spin Liquid and
a magnetic tetrahedrally ordered phase were found. Here we will only discuss the magnetic
orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell
where four spins align such that they span a regular tetrahedron. In this chapter we discuss
the tower of states for the three magnetic phases in this model.

First of all Fig. B.1 shows the simulation cluster used for the Exact Diagonalization
calculations in [182]. We chose a N = 36 = 6×6 sample with periodic boundary conditions.
This sample allows to resolve the momenta Γ, K and M , amongst several others in the
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Figure B.1.: (Left): Simulation cluster for the Exact Diagonalization calculations. (Cen-
ter): Brillouin zone of the triangular lattice with the momenta which can be
resolved with this choice of the simulation cluster. Different symbols denote
the little groups of the corresponding momentum. (Right): TOS for the 120◦
Néel order on the triangular lattice. The symmetry sectors and multiplicities
fulfill the predictions from the symmetry analysis (See Tab. B.2). One should
note, that the multiplicities grow with Stot for non-collinear states.

Brillouin zone. The K and M momenta are the ordering vectors for the 120◦, stripy
and tetrahedral order. Furthermore, this sample features full sixfold rotational as well as
reflection symmetries (the latter only in the absence of the chiral term, i.e. Jχ = 0). Its
pointgroup is therefore given by the dihedral group of order 12, D6. The little groups of
the individual k vectors are also shown in Fig. B.1. For our tower of states analysis we
now want to consider the discrete symmetry group

D = T ×D6 (B.0.22)

where T is the translational group of the magnetic unitcell. The full set of irreducible
representations of this symmetry group is given by the set (k ⊗ ρk) where k denotes the
momentum and ρk is an irrep of the little group associated to k. The points Γ, K and M
give rise to the little groups D6, D3 and D2 (the dihedral groups of order 12, 8, and 4),
respectively. For the stripy and tetrahedral order we can choose a 2× 2 magnetic unitcell,
and a 3 × 3 unitcell for the 120◦ Néel order. The spin rotational symmetry gives rise to
the continuous symmetry group

C = SO(3) (B.0.23)

We can therefore label the full set of irreps as (k, ρk, S) where S denotes the total spin
S representation of SO(3). Similarly to the previous chapter we now want to apply the
character-stabilizer formula, Eq. (B.0.7), to determine the multiplicities of the represen-
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B. Tower of States analysis

Figure B.2.: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities
for each even/odd Stot are constant for collinear phases. (Right): TOS for
the tetrahedral order on the triangular lattice.

tations forming the tower of states. The characters of the irreps (k, ρk, S) are given by

χ(k,ρk,S)(t, p, R) = eik·tχρk(p)
sin
[
(S + 1

2)φ
]

sin φ
2

(B.0.24)

where again φ ∈ [0, 2π] is the angle of rotation of the spin rotation R. The characters of the
pointgroup D6 are given in Tab. A.1. We skip the exact calculations which follow closely
the calculations performed in the previous chapter, although now pointgroup symmetries
are additionally taken into account. The results are summarized in Tab. B.2. We remark

120◦ Néel stripy order tetrahedral order
S Γ.A1 Γ.B1 K.A1 Γ.A1 Γ.E2 M.A Γ.A Γ.E2a Γ.E2b M.A
0 1 0 0 1 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 1
2 1 0 2 1 1 0 0 1 1 1
3 1 2 2 0 0 1 1 0 0 2

Table B.2.: Multiplicities of irreducible representations in the Anderson tower of states for
the three magnetic orders on the triangular lattice defined in the main text.

that the tetrahedral order is stabilized only for Jχ 6= 0 where the model in Eq. (B.0.21) does
not have reflection symmetry any more since the term Si · (Sj ×Sk) does not preserve this
symmetry. Therefore we used only the pointgroup C6 of sixfold rotation in the calculations
of the tower of states for this phase.

If we compare these results to Figs. B.1,B.2 we see that these are exactly the represen-
tations appearing in the TOS from Exact Diagonalization for certain parameter values J2
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and Jχ. This is a strong evidence that indeed SO(3) symmetry is broken in these models
in a way described by the 120◦ Néel, stripy and tetrahedral magnetic prototype states.

It is worth noting, that the sum of the multiplicities is constant with Stot for collinear
phases, e.g. the stripy order shown here, whereas it is increasing for non-collinear or-
ders.
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