Skip to content

apply

Applies an operator given as an Op or OpSum to a State \(\vert w \rangle = \mathcal{O} \vert v\rangle\).

Sources
apply.hpp
apply.cpp
apply.jl


Definition

An operator \(\mathcal{O}\) can be applied to a state \(\vert v\rangle\) in two ways:

  1. Only the input state on which the operator acts is defined is given. The block of the output state is calculated and eventually created automatically.

    State apply(Op const &op, State const &v);
    State apply(OpSum const &ops, State const &v);
    
    apply(op::Op, v::State)
    apply(ops::OpSum, v::State)
    
  2. The output state is also handed as an argument which is overwritten. The compatibility of quantum numbers is checked. This way the output block is not created automatically and, thus, can be used to save computation time if the output block appears repeatedly in the computation.

    void apply(Op const &op, State const &v, State &w);
    void apply(OpSum const &ops, State const &v, State &w);
    
    apply(op::Op, v::State, w::State)
    apply(ops::OpSum, v::State, w::State)
    

Parameters

Name Description
ops / op OpSum or Op defining the operator
v Input State $\vert v\rangle $
w Output State \(\vert w \rangle = O \vert v\rangle\)

Usage Example

int N = 8;
auto block = Spinhalf(N,  N / 2);
auto ops = OpSum();
for (int i=0; i<N; ++i){
  ops += Op("SdotS", {i, (i+1)%N});
}
auto [e0, psi] = eig0(ops, block);
auto phi = apply(Op("S+", 2), psi);
XDIAG_SHOW(inner(ops, psi));
XDIAG_SHOW(inner(ops, phi));
let 
    N = 8
    block = Spinhalf(N,  N รท 2)
    ops = OpSum()
    for i in 1:N
        ops += Op("SdotS", [i, mod1(i+1, N)])
    end
    e0, psi = eig0(ops, block);
    phi = apply(Op("S+", 2), psi)
    @show inner(ops, psi)
    @show inner(ops, phi)
end