Skip to content

eig0

Computes the groud state energy and the ground state of a Hermitian operator on a block by using an iterative Lanczos algorithm. This function is a shortcut for the eigs_lanczos function. We refer to eigs_lanczos for further details on the algorithm and the convergence criterion.

Sources
sparse_diag.hpp
sparse_diag.cpp
sparse_diag.jl


Definition

std::tuple<double, State> eig0(OpSum const &ops, Block const &block,
    double precision = 1e-12, int64_t max_iterations = 1000, 
    int64_t random_seed = 42);
eig0(ops::OpSum, block::Block;  precision::Float64 = 1e-12, 
     max_iterations::Int64 = 1000, random_seed::Int64 = 42)

Parameters

Name Description Default
ops OpSum defining a Hermitian operator
block block on which the operator is defined
precision accuracy of the computed ground state 1e-12
max_iterations maximum number of iterations 1000
random_seed random seed for setting up the initial vector 42

Returns

Type Description
real number lowest lying eigenvalue of ops
State groundstate

Usage Example

int N = 8;
int nup = N / 2;
auto block = Spinhalf(N, nup);

// Define the nearest-neighbor Heisenberg model
auto ops = OpSum();
for (int i=0; i<N; ++i) {
  ops += "J" * Op("SdotS", {i, (i+1) % N});
}
ops["J"] = 1.0;
auto [e0, gs] = eig0(ops, block);
let 
    N = 8
    nup = N รท 2
    block = Spinhalf(N, nup)

    # Define the nearest-neighbor Heisenberg model
    ops = OpSum()
    for i in 1:N
        ops += "J" * Op("SdotS", [i, mod1(i+1, N)])
    end
    ops["J"] = 1.0
    e0, gs = eig0(ops, block);
end