eigvals_lanczos
Performs an iterative eigenvalue calculation using the Lanczos algorithm. Returns the tridiagonal matrix, eigenvalues, number of iterations and the stopping criterion.
Sources
eigvals_lanczos.hpp
eigvals_lanczos.cpp
eigvals_lanczos.jl
Definition
The Lanczos algorithm can be run in thre distinct ways:
-
A random intial state \(|\psi_0\rangle = |r\rangle\) with normal distributed entries is used.
-
The initial state \(|\psi_0\rangle\) is explicitly specified.
Notice this version copies the initial state, which requires memory but keeps the orginal state intact.
-
The initial state \(|\psi_0\rangle\) is explicitly specified and overwritten in the process. This version can save memory, but the initial state \(|\psi_0\rangle\) cannot be used later.
Parameters
Name | Description | Default |
---|---|---|
ops | OpSum defining the bonds of the operator | |
block | block on which the operator is defined | |
psi0 | Initial State from which the Lanczos algorithm is started | |
neigvals | number \(k\) of eigenvalue to converge | 1 |
precision | accuracy of the computed ground state | 1e-12 |
max_iterations | maximum number of iterations | 1000 |
deflation_tol | tolerance for deflation, i.e. breakdown of Lanczos due to Krylow space exhaustion | 1e-7 |
random_seed | random seed for setting up the initial vector | 42 |
Returns
A struct of type EigvalsLanczosResult
with the following entries.
Entry | Description |
---|---|
alphas | diagonal elements of the tridiagonal matrix |
betas | off-diagonal elements of the tridiagonal matrix |
eigenvalues | the computed Ritz eigenvalues of the tridiagonal matrix |
niterations | number of iterations performed |
criterion | string denoting the reason why the algorithm stopped |
Convergence criterion
The algorithm terminates if the \(k\)-th (\(k\) is the argument neigvals
) approximate eigenvalue changes only by a fraction smaller than \(\epsilon\) (\(k\) is the argument precision
), i.e.
Here, \(\tilde{e}_k^{(n)}\) denotes the Lanczos approximation to the \(k\)-th eigenvalue after \(n\) iterations.
Usage Example
int N = 8;
int nup = N / 2;
auto block = Spinhalf(N, nup);
// Define the nearest-neighbor Heisenberg model
auto ops = OpSum();
for (int i=0; i<N; ++i) {
ops += "J" * Op("SdotS", {i, (i+1) % N});
}
ops["J"] = 1.0;
// With random intial state
auto res = eigvals_lanczos(ops, block);
XDIAG_SHOW(res.alphas);
XDIAG_SHOW(res.betas);
XDIAG_SHOW(res.eigenvalues);
// With specific initial state
auto psi0 = product_state(block, {"Up", "Dn", "Up", "Dn", "Up", "Dn", "Up", "Dn"});
auto res2 = eigvals_lanczos(ops, psi0);
XDIAG_SHOW(res.alphas);
XDIAG_SHOW(res.betas);
XDIAG_SHOW(res.eigenvalues);
let
N = 8
nup = N รท 2
block = Spinhalf(N, nup)
# Define the nearest-neighbor Heisenberg model
ops = OpSum()
for i in 1:N
ops += "J" * Op("SdotS", [i, mod1(i+1, N)])
end
ops["J"] = 1.0
# With random intial state
res = eigvals_lanczos(ops, block)
@show res.alphas
@show res.betas
@show res.eigenvalues
# With specific initial state
psi0 = product_state(block, ["Up", "Dn", "Up", "Dn", "Up", "Dn", "Up", "Dn"])
res2 = eigvals_lanczos(ops, psi0)
@show res.alphas
@show res.betas
@show res.eigenvalues
end