Skip to content

Green's function

Uses the Lanczos algorithm[1] to calculate the Green's function of the Hubbard model. See also the documentation page for the spin structure factor. The Green's function is given by

\[ G({\bf k}, \omega)=-i\int dt e^{-i\omega t}\langle \lbrace c_{\bf k}(t),c^{\dagger}_{\bf k}\rbrace\rangle. \]

To achieve a mesh of momentum space, we can use either use the generated momenta inside the Wigner-Seitz cell allowed by the finite cluster or twisted boundary conditions[2], where the lattice \({\bf k}\)-point is shifted to \({\bf k + \boldsymbol{\theta}}\) by introducing a flux via Peierls substitution in the Hamiltonian, \(t_{ij} \rightarrow t_{ij}\exp(i{\bf \boldsymbol{\theta}\cdot r}_{ij})\). For this example, we're calculating the spectral function along the cut \(\Gamma\)-\(M\), i.e., the diagonal of the reciprocal lattice unit cell.

example code

    using XDiag
    using HDF5

    function main()
      say_hello()

      # IO
      latticeInput = "../../misc/data/square.8.hubbard.ttprime.toml"
      lfile = FileToml(latticeInput)

      filename = "../../misc/data/examples_output/hubbard_greens_f.h5"
      outfile = h5open(filename, "w")

      # Define the Hubbard model
      N = 8
      nup = 3
      ndn = 3
      ops = read_opsum(lfile, "Interactions")
      t = 1.0
      tp = 0.0
      ops["Ty"] = t
      ops["Tx"] = t
      ops["Tprime+"] = tp
      ops["Tprime-"] = tp
      ops += "U" * Op("HubbardU")
      ops["U"] = -6.0
      @show(ops)
      opsTBC = ops

      irrep = read_representation(lfile, "Gamma.C1.A")

      # compute groundstate (known to be at k=0)
      println("Computing ground state ...")
      block = Electron(N, nup, ndn, irrep)
      e0, gs = eig0(ops, block)
      make_complex!(gs)
      println("done.")
      println("Ground state energy: $e0")
      outfile["e0"] = e0

      function tbc_mesh(kx, ky)
        # compare to twisted boundary condition calculation,
        # cf. Zemljic & Prelovsek, PRB 75, 104514 (2007)
        # Tohyama, PRB 70, 174517 (2004).
        println("\n considering TBC momentum [$kx,$ky]")
        opsTBC["Tx"] = t * exp(1im * kx)
        opsTBC["Ty"] = t * exp(1im * ky)
        opsTBC["Tprime+"] =
          tp * exp(1im * (kx + ky)) # r_ij = (1,1)
        opsTBC["Tprime-"] =
          tp * exp(1im * (kx - ky)) # r_ij = (1,-1)

        e0, gs_tbc = eig0(opsTBC, block)
        # @show e0
        c_q_tbc = symmetrize(sqrt(N) * Op("Cup", 1), irrep)
        Av = apply(c_q_tbc, gs_tbc)
        @show nrm = norm(Av)
        Av /= nrm

        res_tbc = eigvals_lanczos_inplace(opsTBC, Av)
        @show res_tbc.eigenvalues[1]
        return nrm, res_tbc
      end

      # loop through momenta
      irreps = Dict{String,Vector{Float64}}(
        "Gamma.C1.A" => [0.0, 0.0],
        "M.C1.A" => [3.1415926535897931, 3.1415926535897931],
        "Sigma0.C1.A" => [1.5707963267948966, 1.5707963267948966],
        "Sigma1.C1.A" => [1.5707963267948966, -1.5707963267948966],
        "Sigma2.C1.A" => [-1.5707963267948966, 1.5707963267948966],
        "Sigma3.C1.A" => [-1.5707963267948966, -1.5707963267948966],
        "X0.C1.A" => [3.1415926535897931, 0.0000000000000000],
        "X1.C1.A" => [0.0000000000000000, 3.1415926535897931])
      for (name, momentum) in irreps
        println("\n considering irrep $name, momentum $momentum")
        aq_irrep = read_representation(lfile, name)
        c_q = symmetrize(sqrt(N) * Op("Cup", 1), aq_irrep)
        Av = apply(c_q, gs)
        @show nrm = norm(Av)
        Av /= nrm

        res = eigvals_lanczos_inplace(ops, Av)
        @show res.eigenvalues[1]
        outfile["$name/norm"] = nrm
        outfile["$name/alphas"] = res.alphas
        outfile["$name/betas"] = res.betas
        outfile["$name/eigs"] = res.eigenvalues

        tbc_mesh(momentum[1], momentum[2])
      end

      for (k, kx) in enumerate(0:pi/101:pi)
        nrm, res_tbc = tbc_mesh(kx, kx)

        ik = "$(k-1)" # mimics c++ output
        # group = create_group(outfile, ik)
        # subgroup = create_group(group, ik)
        outfile["$ik/$ik/norm"] = nrm
        outfile["$ik/$ik/alphas"] = res_tbc.alphas
        outfile["$ik/$ik/betas"] = res_tbc.betas
        outfile["$ik/$ik/eigs"] = res_tbc.eigenvalues
      end
    end

    main()
    #include <xdiag/all.hpp>

    using namespace xdiag;
    using namespace arma;
    using fmt::format;
    using namespace std::complex_literals;

    int main() try {
      say_hello();

      // IO
      std::string latticeInput =
          XDIAG_DIRECTORY "/misc/data/square.8.hubbard.ttprime.toml";
      auto lfile = FileToml(latticeInput);

      std::string filename =
          XDIAG_DIRECTORY "/misc/data/examples_output/hubbard_greens_f.h5";
      auto outfile = FileH5(filename, "w!");

      // Define the Hubabrd model
      int N = 8;
      int nup = 3;
      int ndn = 3;
      auto ops = read_opsum(lfile, "Interactions");
      auto t = -1.;
      auto tp = 0.;
      ops["Ty"] = t;
      ops["Tx"] = t;
      ops["Tprime+"] = tp;
      ops["Tprime-"] = tp;
      ops += "U" * Op("HubbardU");
      ops["U"] = -6.;
      auto opsTBC = ops;

      auto irrep = read_representation(lfile, "Gamma.C1.A");

      // compute groundstate (known to be at k=0)
      Log("Computing ground state ...");
      auto block = Electron(N, nup, ndn, irrep);
      auto [e0, gs] = eig0(ops, block);
      gs.make_complex();
      Log("Ground state energy: {:.12f}", e0);
      outfile["e0"] = e0;

      auto tbc_mesh =
          [&opsTBC, &t, &tp, &block, &N,
           &irrep](double const &kx,
                   double const &ky) -> std::pair<double, EigvalsLanczosResult> {
        // lambda to perform TBC calc.
        // compare to twisted boundary condition calculation,
        // cf. Zemljic & Prelovsek, PRB 75, 104514 (2007);
        // Tohyama, PRB 70, 174517 (2004).
        Log("TBC calculation, momentum [{}, {}]", kx, ky);
        opsTBC["Tx"] = t * exp(1i * kx);
        opsTBC["Ty"] = t * exp(1i * ky);
        opsTBC["Tprime+"] = tp * exp(1i * (kx + ky)); // r_ij = (1,1)
        opsTBC["Tprime-"] = tp * exp(1i * (kx - ky)); // r_ij = (1,-1)
        // XDIAG_SHOW(opsTBC);
        auto [e0_tbc, gs_tbc] = eig0(opsTBC, block, 1e-12, 100);
        // XDIAG_SHOW(e0_tbc);
        auto c_q_tbc = symmetrize(sqrt((double)N) * Op("Cup", 0), irrep);
        auto Av = apply(c_q_tbc, gs_tbc);
        auto nrm = norm(Av);
        XDIAG_SHOW(nrm);
        Av /= nrm;

        auto res_tbc = eigvals_lanczos_inplace(opsTBC, Av, 1, 1e-12, 100);
        XDIAG_SHOW(res_tbc.eigenvalues(0));
        Log("n iterations {}", res_tbc.niterations);
        return {nrm, res_tbc};
      };

      // loop through momenta of the cluster reciprocal lattice
      std::vector<std::pair<std::string, arma::vec>> irreps = {
          {"Gamma.C1.A", {0., 0.}},
          {"M.C1.A", {3.1415926535897931, 3.1415926535897931}},
          {"Sigma0.C1.A", {1.5707963267948966, 1.5707963267948966}},
          {"Sigma1.C1.A", {1.5707963267948966, -1.5707963267948966}},
          {"Sigma2.C1.A", {-1.5707963267948966, 1.5707963267948966}},
          {"Sigma3.C1.A", {-1.5707963267948966, -1.5707963267948966}},
          {"X0.C1.A", {3.1415926535897931, 0.0000000000000000}},
          {"X1.C1.A", {0.0000000000000000, 3.1415926535897931}}};
      for (const auto &[name, momentum] : irreps) {
        Log("considering irrep {}, momentum [{}, {}]", name, momentum(0),
            momentum(1));
        auto aq_irrep = read_representation(lfile, name);
        auto c_q = symmetrize(sqrt((double)N) * Op("Cup", 0),
                              aq_irrep); // normalize to 1/sqrt(N)
        auto Av = apply(c_q, gs);
        auto nrm = norm(Av);
        Av /= nrm;
        XDIAG_SHOW(nrm);

        auto res = eigvals_lanczos_inplace(ops, Av);
        XDIAG_SHOW(res.eigenvalues(0));
        outfile[format("{}/norm", name)] = nrm;
        outfile[format("{}/alphas", name)] = res.alphas;
        outfile[format("{}/betas", name)] = res.betas;
        outfile[format("{}/eigs", name)] = res.eigenvalues;

        // compare to tbc calc
        auto [nrm_tbc, res_tbc] = tbc_mesh(momentum(0), momentum(1));
        XDIAG_SHOW(nrm_tbc);
        XDIAG_SHOW(res_tbc.eigenvalues(0));
      }

      // TBC mesh, 10x10 grid
      int nkx = 101;
      int nky = nkx;
      auto momentum = [&nkx, &nky](int const &ikx,
                                   int const &iky) -> std::pair<double, double> {
        return {(double)ikx * 3.1415926535897931 / (double)(nkx - 1),
                (double)iky * 3.1415926535897931 / (double)(nky - 1)};
      };
      for (int ikx = 0; ikx < nkx; ++ikx) {
        auto iky = ikx;
        // for (int iky = 0; iky < nky; ++iky) {
        auto [kx, ky] = momentum(ikx, iky);
        auto [nrm, res] = tbc_mesh(kx, ky);
        XDIAG_SHOW(nrm);
        XDIAG_SHOW(res.eigenvalues(0));

        outfile[format("{}/{}/norm", ikx, iky)] = nrm;
        outfile[format("{}/{}/alphas", ikx, iky)] = res.alphas;
        outfile[format("{}/{}/betas", ikx, iky)] = res.betas;
        outfile[format("{}/{}/eigs", ikx, iky)] = res.eigenvalues;
        outfile[format("{}/{}/kx", ikx, iky)] = kx;
        outfile[format("{}/{}/ky", ikx, iky)] = ky;
        // }
      }

    } catch (Error e) {
      error_trace(e);
    }

references

[1] Prelovšek, P., & Bonča, J. (2013). Ground state and finite temperature Lanczos methods. Strongly Correlated Systems: Numerical Methods, 1-30.

[2] Tohyama, T. (2004). Asymmetry of the electronic states in hole-and electron-doped cuprates: Exact diagonalization study of the \(t-t′-t ″-J\) model. Phys. Rev. B, 70(17), 174517