Bubble Nucleation in the 1D Quantum Ising Chain
We study a one-dimensional quantum Ising chain in the presence of both transverse (\(h_x\)) and longitudinal (\(h_z\)) fields. This system exhibits a first-order quantum phase transition (FOQPT) between two symmetry-broken ferromagnetic phases with opposite longitudinal magnetization.
When the longitudinal field is slowly ramped from negative to positive values across the FOQPT, the system undergoes quantized bubble nucleation events [1]: sharp nonadiabatic transitions in the dynamics where local domains (or “bubbles”) of the new vacuum appear within the metastable phase. Each such nucleation corresponds to an \(n\)-spin bubble becoming degenerate with the initial state, and the tunneling between them is mediated via an \(n\)-th order process in \(h_x\). These events can be accurately described using Landau-Zener theory near each resonance point.
The Model
We consider the Hamiltonian:
where: - \(\sigma^x\), \(\sigma^z\) are Pauli matrices, - \(h_x\) introduces quantum fluctuations, - \(h_z(t) = h_z^{\text{in}} + t/\tau_Q\) is the time-dependent longitudinal field.
The FOQPT separates the \(\langle \sigma^z \rangle < 0\) and \(\langle \sigma^z \rangle > 0\) ferromagnetic phases. The dynamics is initiated in the ground state at \(h_z = h_z^{\text{in}} < 0\), and the field is ramped linearly to \(h_z^{\text{fin}} > 0\).
Simulation Overview
The Julia code in main.jl
performs the following steps:
- Initialize a chain of length \(N = 8\) with a transverse field \(h_x = 0.2\).
- Prepare the initial state by computing the ground state at \(h_z = -3\) using exact diagonalization (
eig0
). - Evolve the system in real time with time steps \(\Delta t = 0.05\), using
time_evolve
, while slowly increasing \(h_z(t)\) across the FOQPT. - Measure the longitudinal magnetization \(m_z(t) = \langle \sigma^z \rangle\) at each step.
- Plot the results of the magnetization dynamics for multiple quench rates \(\tau_Q \in \{64, 256, 1024\}\).
The plot below demonstrates distinct jumps in magnetization at characteristic values of \(h_z\), consistent with quantized bubble nucleation and higher-order tunneling events.
Code
using XDiag
using LinearAlgebra
using Printf
using GLMakie
using LaTeXStrings
# Build a LaTeX legend label for τ_Q (used in plotting)
function latex_label(tauQ::Union{Float64, Int})
return LaTeXString("\\tau_Q = " * string(tauQ))
end
# Construct the Ising Hamiltonian with transverse and longitudinal fields
function make_hamiltonian(N::Int, hx::Float64, hz::Float64)
op_sum = OpSum()
# Nearest-neighbor Ising term: -σᶻᵢ σᶻᵢ₊₁
for i in 1:(N-1)
key_zz = "zz_$i"
op_sum += key_zz * Op("SzSz", [i, i+1])
op_sum[key_zz] = -4.0 # compensate for Sz = ±1/2
end
# Transverse field: -hx * σˣᵢ = -hx (S⁺ + S⁻)
for i in 1:N
op_sum += "sp_$i" * Op("S+", [i])
op_sum["sp_$i"] = -hx
op_sum += "sm_$i" * Op("S-", [i])
op_sum["sm_$i"] = -hx
end
# Longitudinal field: -hz * σᶻᵢ
for i in 1:N
op_sum += "hz_$i" * Op("Sz", [i])
op_sum["hz_$i"] = -2 * hz
end
return op_sum
end
# Measure longitudinal magnetization m_z
function measure(psi::State, N::Int)
mz = 0.0
for i in 1:N
mz += 2.0 * real(inner(Op("Sz", [i]), psi)) # convert Sz = ±1/2 to ±1
end
return mz / N
end
# Compute ground state for given parameters
function ground_state(N::Int, hx::Float64, hz::Float64)
block = Spinhalf(N)
H = make_hamiltonian(N, hx, hz)
return eig0(H, block)
end
function main()
# System and ramp parameters
N = 8
hx = 0.2
hz_in, hz_fin = -3.0, 3.0
dt = 0.05
tauQ_list = [64, 256, 1024] # different ramp speeds
results = Dict{Float64, Tuple{Vector{Float64}, Vector{Float64}}}()
# Simulate slow longitudinal field ramps for various τ_Q
for τQ in tauQ_list
@printf("\n=== Running quench for tauQ=%.1f ===\n", τQ)
total_time = (hz_fin - hz_in) * τQ
nsteps = Int(ceil(total_time / dt))
dt_eff = total_time / nsteps
e0, psi0 = ground_state(N, hx, hz_in)
hz_vals = zeros(nsteps+1)
mz_vals = zeros(nsteps+1)
hz_vals[1] = hz_in
mz_vals[1] = measure(psi0, N)
psi_t = psi0
for step in 1:nsteps
t_cur = step * dt_eff
frac = t_cur / total_time
hz_now = hz_in + (hz_fin - hz_in) * frac
H = make_hamiltonian(N, hx, hz_now)
psi_t = time_evolve(H, psi_t, dt_eff)
hz_vals[step+1] = hz_now
mz_vals[step+1] = measure(psi_t, N)
if step % 500 == 0
@printf("step=%5d/%5d => t=%.2f, h_z=%.2f, m_z=%.3f\n",
step, nsteps, t_cur, hz_now, mz_vals[step+1])
end
end
results[τQ] = (hz_vals, mz_vals)
end
# Plotting m_z vs h_z(t) for each ramp rate
fig = Figure(size=(800, 600))
ax = Axis(fig[1, 1];
title="Bubble Nucleation through Slow Quench",
xlabel=L"$h_z(t)$", ylabel=L"$m_z$",
xticks = ([-3.0, -2, -1, 0.0, 1, 2, 3.0],
[L"-3", L"-2", L"-1", L"0", L"1", L"2", L"3"]),
yticks = ([-1.0, -0.5, 0.0, 0.5],
[L"-1", L"-0.5", L"0", L"0.5"]),
xticksize=20, yticksize=20,
xticklabelsize=36, yticklabelsize=36,
xlabelsize=36, ylabelsize=36,
titlesize=29
)
colors = (:blue, :red, :green)
for (i, τQ) in enumerate(tauQ_list)
hzvals, mzvals = results[τQ]
lines!(ax, hzvals[1:5:end], mzvals[1:5:end];
color=colors[i], linewidth=3,
label=latex_label(τQ)
)
end
axislegend(ax, position=:lt, labelsize=40)
save("magnetization_slow_quench.png", fig)
println("\n Plot saved to 'magnetization_slow_quench.png'")
end
main()
references
[1]
Aritra Sinha, Titas Chanda, and Jacek Dziarmaga
Nonadiabatic dynamics across a first-order quantum phase transition: Quantized bubble nucleation,
Phys. Rev. B 103, L220302 (2021).