Skip to content

\(S=\frac12\) chain: Symmetries and Ground State Correlators

This example demonstrates how ground state expectation values can be computed for the spin-\(\frac{1}{2}\) XXX antiferromagnetic chain

\[ H = \sum_{\langle i, j \rangle} \bm{S}_i \cdot \bm{S}_j = \sum_{\langle i, j \rangle} (S^x_i S^x_j + S^y_i S^y_j + S^z_i S^z_j) \]

with periodic boundary conditions.

This is done in three different ways, showcasing how the conservation of the overall number of up-spins as well as translation symmetry can be used to lower memory requirements.

  • The function gs_correlator_simple() is the most basic way of obtaining the ground state and computing a correlator. It does not use any of the aforementioned symmetries of the system and therefore needs to store a full Hilbert space vector. Although being fast, this can cause memory issues.

  • The function gs_correlator_Sz_sym() exploits that \(H\) conserves the number of up-spins, decomposing the Hamiltonian into \(N+1\) separate blocks with a fixed number \(n_{up} = 0, 1, \ldots, N\) of spins pointing up. The Lanczos algorithm is then performed on each of the sub-blocks which may take longer but yields a ground state vector whose size is bounded by the size of the largest sub-block, substantially reducing the memory footprint.

  • The function gs_correlator_translation_sym() exploits that all nearest-neighbor bonds are equal and periodic boundary conditions are used. Thus, the Hamiltonian is invariant under translations and decomposes into \(N\) irreducible representations (irreps) labelled by lattice momentum \(2\pi/N \times k\) where \(k=0, 1, \ldots, N-1\). Again, the Lanczos algorithm is run on all momentum sub-blocks, effectively exchanging a longer runtime for less memory consumption. An important caveat when working with representations is that the operators inside expectation values must be symmetrized with respect to the symmetry group.

#include <xdiag/all.hpp>
#include <vector>
#include <complex>
#include <math.h>

using namespace xdiag;

// treat Hilbert space as a whole (memory consuming)
void gs_correlator_simple(int N, OpSum& H, OpSum& corr_op){
    auto full_block = Spinhalf(N);
    auto lanczos_res = eigs_lanczos(H, full_block);
    auto e0 = lanczos_res.eigenvalues[0];
    auto psi0 = lanczos_res.eigenvectors;
    auto corr = inner(corr_op, psi0);

    Log("Ground state energy: {:.12f}", e0);
    Log("Ground state correlator: {:.12f}", corr);
    Log("State vector length: {:d}", size(psi0));
};

// use Sz_tot conservation (less memory consuming)
void gs_correlator_Sz_sym(int N, OpSum& H, OpSum& corr_op){
    double e0 = 0.0;
    double gs;
    State psi0;
    // check blocks with fixed number of up-spins
    for (int nup = 0; nup < N+1; nup++){
        auto sym_block = Spinhalf(N, nup);
        auto lanczos_res = eigs_lanczos(H, sym_block);
        gs = lanczos_res.eigenvalues[0];
        if (gs < e0){
            e0 = gs;
            psi0 = lanczos_res.eigenvectors;
        };
    };
    auto corr = inner(corr_op, psi0);

    Log("Ground state energy: {:.12f}", e0);
    Log("Ground state correlator: {:.12f}", corr);
    Log("State vector length: {:d}", size(psi0));
};

std::complex<double> C_N_character(int N, int k, int p){
    return std::exp( ( (2 * k * p) * M_PI / (double)N ) * std::complex<double>(0,1.) );
};

// use translation symmetry (less memory consuming)
void gs_correlator_translation_sym(int N, OpSum& H, OpSum& corr_op){

    // define shift by one site
    std::vector<int64_t> T_perm (N, 0);
    for (int i=0; i<N-1; i++){
        T_perm[i] = i + 1;
    };
    auto T = Permutation(T_perm);

    // define cyclic group
    std::vector<Permutation> perms (N);
    for (int i=0; i<N; i++){
        perms[i] = pow(T, i);
    };
    auto C_N = PermutationGroup(perms);


    // define irreps from character tables, labelled by momentum (2pi/N ×) k
    std::vector<Representation> irreps (N);
    std::vector<std::complex <double> > characters (N, 0.0);
    for (int k = 0; k < N; k++){
        for (int p=0; p<N; p++){
            characters[p] = C_N_character(N, k, p);
        };
        irreps[k] =  Representation(C_N, characters);
    };

    // check all translation symmetry blocks
    double e0 = 0.0;
    double gs;
    State psi0;
    for (int k = 0; k < N; k++){
        auto sym_block = Spinhalf(N, irreps[k]);
        auto lanczos_res = eigs_lanczos(H, sym_block);
        gs = lanczos_res.eigenvalues[0];
        if (gs < e0){
            e0 = gs;
            psi0 = lanczos_res.eigenvectors;
        };
    };

    // now the operator must be symmetrized!
    auto corr = inner(symmetrize(corr_op, C_N), psi0);

    Log("Ground state energy: {:.12f}", e0);
    Log("Ground state correlator: {:.12f}", corr);
    Log("State vector length: {:d}", size(psi0));
};




int main() try {

    // periodic N-site Heisenberg antiferromagnet
    int N = 14;
    auto H = OpSum();
    for (int i = 0; i < N; i++) {
        H += "J" * Op("SdotS", {i, (i+1) % N});
    };
    H["J"] = 1.0;

    // define spin correlator at "half-chain" distance
    auto corr_op = OpSum();
    corr_op = Op("SdotS", {0, N/2 - 1});

    // run different implementations
    gs_correlator_simple(N, H, corr_op);

    gs_correlator_Sz_sym(N, H, corr_op);

    gs_correlator_translation_sym(N, H, corr_op);

} catch (Error e) {
        error_trace(e);
};
using XDiag

function main()

    # periodic N-site Heisenberg antiferromagnet
    N = 14
    H = OpSum()
    for i in 1:N
        H += "J" * Op("SdotS", [i, mod1(i+1, N)])
    end
    H["J"] = 1.0 

    # define spin correlator at "half-chain" distance
    corr_op = OpSum()
    corr_op += Op("SdotS", [1, N ÷ 2])

    # run different implementations
    gs_correlator_simple(N, H, corr_op)

    gs_correlator_Sz_sym(N, H, corr_op)

    gs_correlator_translation_sym(N, H, corr_op)

end

# treat Hilbert space as a whole (memory consuming)
function gs_correlator_simple(N::Int, H::OpSum, corr_op::OpSum)
    full_block = Spinhalf(N) 
    lanczos_res = eigs_lanczos(H, full_block)
    e0 = lanczos_res.eigenvalues[1]
    psi0 = lanczos_res.eigenvectors    
    corr = inner(corr_op, psi0)

    println("Ground state energy: $e0")
    println("Ground state correlator: $corr")
    println("State vector length = ", size(psi0))
end

# use Sz_tot conservation (less memory consuming) 
function gs_correlator_Sz_sym(N::Int, H::OpSum, corr_op::OpSum)
    e0 = Inf
    psi0 = nothing
    Nup_vals = 0:N
    # check blocks with fixed number of up-spins
    for nup in Nup_vals
        sym_block = Spinhalf(N, nup) 
        lanczos_result = eigs_lanczos(H, sym_block)
        gs = lanczos_result.eigenvalues[1]
        if  gs < e0
            e0 = gs
            psi0 = lanczos_result.eigenvectors 
        end
    end    
    corr = inner(corr_op, psi0)

    println("Ground state energy: $e0")
    println("Ground state correlator: $corr")
    println("State vector length = ", size(psi0))
end

# use translation symmetry (less memory consuming)
function gs_correlator_translation_sym(N::Int, H::OpSum, corr_op::OpSum)

    # define shift by one site
    T = Permutation(circshift(1:N, -1))

    # define cyclic group
    C_N = PermutationGroup([T^k for k in 0:(N-1)])

    # define irreps from character tables, labelled by momentum (2pi/N ×) k
    character_table = [ [C_N_character(N, k, p) for p in 0:(N-1)] for k in 0:(N-1)]
    irreps = [ Representation(C_N, character_table[k]) for k in 1:N ]   

    # check all translation symmetry blocks
    e0 = Inf
    psi0 = nothing
    for k in eachindex(irreps)
        sym_block = Spinhalf(N, irreps[k]) 
        lanczos_result = eigs_lanczos(H, sym_block)
        gs = lanczos_result.eigenvalues[1]
        if  gs < e0
            e0 = gs
            psi0 = lanczos_result.eigenvectors
        end
    end

    # now the operator must be symmetrized!
    corr = inner(symmetrize(corr_op, C_N), psi0)

    println("Ground state energy: $e0")
    println("Ground state correlator: $corr")
    println("State vector length = ", size(psi0))
end

function C_N_character(N::Int, k::Int, p::Int)
    exp(im * 2 * pi * k * p / N)
end

main()