Level Statistics in Spin-\(1/2\) Chains
This example demonstrates the differing level statistics of integrable and non-integrable models using the example of spin-\(1/2\) chains.
The term level statistic refers to the probability distribution \(P(s)\) where the variable \(s\) is the difference between adjacent energy levels \(0 \leq E_{i+1}-E_i\). That is, for a given quantum system \(P(s)\) describes the likelihood that the next excited state above a randomly chosen energy level \(E\) has energy \(E + s\). To ensure comparability across different systems, one typically normalizes the level spacings by its mean value \(\tilde{s} = s/ \bar{s}\) and considers \(P(\tilde{s})\). Since this is the standard procedure, we will assume that \(P(s)\) is the distribution of the normalized energy differences below instead of writing \(P(\tilde{s})\).
It is well established that for integrable systems (i.e. those with conserved quantities) the level statistic is a Poissonian
whereas the so-called Wigner-Dyson distribution emerges for non-integrable systems
Intuitively speaking, this is because having a system with symmetries and associated conserved quantities leads to degeneracies that contribute to seeing \(s=0\) very often such that \(P_{\mathrm{Pois}}(0) > 0\). On the contrary, the energy levels of non-integrable systems are approximately randomly distributed (especially in the bulk of the spectrum), giving a distribution satisfying \(P_{\mathrm{WD}}(0) = 0\).
To showcase this, we inspect two spin-\(1/2\) Hamiltonians on a chain, one being the integrable XXZ model
while the second merely adds a next-nearest-neighbor interaction
and becomes "non-integrable". We must put "non-integrable" in quotes here, since strictly speaking both models are integrable. However, the \(H_{\mathrm{ni}}\) system becomes non-integrable once the trivial spin-flip, mirror, and translation symmetries (we employ periodic boundary conditions) are removed. This is done by considering specific sectors of the total Hilbert space which is easily done in XDiag
.
The code below demonstrates how the level statistics of these systems can be computed inside the sectors where all trivial symmetries are removed. The Julia version also contains a simple plotting method, leading to the following distribution of level statistics:
#include <vector>
#include <complex>
#include <math.h>
#include <xdiag/all.hpp>
using namespace xdiag;
std::complex<double> C_N_character(int N, int k, int p){
return std::exp( ( (2 * k * p) * M_PI / (double)N ) * std::complex<double>(0,1.) );
};
std::vector<double> compute_level_statistics(int N, OpSum H){
// fix magnetization (Sztot = 0 still has spin-flip symmetry!)
int Nup = N/2 + 1;
// fix lattice momentum (k = 0, N/2 still have parity symmetry!)
int k = 1;
std::vector<int64_t> T_perm (N, 0);
for (int i=0; i<N-1; i++){
T_perm[i] = i + 1;
};
auto T = Permutation(T_perm);
std::vector<Permutation> perms (N);
for (int i=0; i<N; i++){
perms[i] = pow(T, i);
};
auto C_N = PermutationGroup(perms);
std::vector< std::complex <double> > irrep_k_characters (N, 0.0);
for (int p=0; p<N; p++){
irrep_k_characters[p] = C_N_character(N, k, p);
};
auto irrep_k = Representation(C_N, irrep_k_characters);
// block of Hamiltonian without remaining symmetries
auto block = Spinhalf(N, Nup, irrep_k);
// find its eigenspectrum
arma::cx_mat Hmat = matrixC(H, block);
arma::vec eigenvalues = eig_sym(Hmat);
// compute level statistics (taking only the inner most half of spectrum)
int N_levels = eigenvalues.n_elem;
int s_start = (int)(0.25 * N_levels);
int s_stop = (int)(0.75 * N_levels);
int s_num = s_stop - s_start;
std::vector<double> s_arr (s_num);
double s_arr_sum = 0.0;
for (int i=0; i<s_num; i++){
s_arr[i] = eigenvalues[s_start+i+1] - eigenvalues[s_start+i];
s_arr_sum += s_arr[i];
}
s_arr_sum = s_arr_sum / s_num;
// normalize
for (int i=0; i<s_num; i++){
s_arr[i] = s_arr[i] / s_arr_sum;
}
return s_arr;
}
int main() try {
int N = 18; // length of spin chain
// definition of integrable model
auto H_i = OpSum();
for (int i=0; i<N; i++){
H_i += "J" * Op("SzSz", {i, (i+1)%N});
H_i += "Delta" * Op("Exchange", {i, (i+1)%N});
}
// definition of non-integrable model
auto H_ni = OpSum();
for (int i=0; i<N; i++){
H_ni += "J" * Op("SzSz", {i, (i+1)%N});
H_ni += "Delta" * Op("Exchange", {i, (i+1)%N});
H_ni += "J2" * Op("SzSz", {i, (i+2)%N});
}
// assign coupling values
double J, Delta, J2;
J = 1.0;
Delta = J2 = 0.5;
H_i["J"] = H_ni["J"] = J;
H_i["Delta"] = H_ni["Delta"] = Delta;
H_ni["J2"] = J2;
// compute level statistics (remember to eliminate trivial symmetries!)
std::vector<double> H_i_statistics = compute_level_statistics(N, H_i);
std::vector<double> H_ni_statistics = compute_level_statistics(N, H_ni);
// do something with H_i_statistics and H_ni_statistics here (Julia version has a plotting routine)
return 0;
} catch(Error e) {
error_trace(e);
}
using XDiag
using LinearAlgebra # exact diagonalization
using Plots # optional: plot histograms
function main()
N = 18
# definition of integrable model
H_i = OpSum()
for i in 1:N
H_i += "J" * Op("SzSz", [i,mod1(i+1, N)])
H_i += "Delta" * Op("Exchange", [i, mod1(i+1, N)])
end
# definition of non-integrable model
H_ni = OpSum()
for i in 1:N
H_ni += "J" * Op("SzSz", [i, mod1(i+1, N)])
H_ni += "Delta" * Op("Exchange", [i, mod1(i+1, N)])
H_ni += "J2" * Op("SzSz", [i, mod1(i+2, N)])
end
# assign coupling values
J = 1.0
Delta = J2 = 0.5
H_i["J"] = H_ni["J"] = J
H_i["Delta"] = H_ni["Delta"] = Delta
H_ni["J2"] = J2
# compute level statistics (remember to eliminate trivial symmetries!)
H_i_statistics = compute_level_statistics(N, H_i)
H_ni_statistics = compute_level_statistics(N, H_ni)
# optional plot of histograms (only in Julia version!)
plot_histograms(H_i_statistics, H_ni_statistics)
end
function compute_level_statistics(N::Int, H::OpSum) :: Vector{Float64}
# fix magnetization (Sz_tot = 0 still has spin-flip symmetry!)
Nup = NĂ·2 + 1
# fix lattice momentum (k = 0, N/2 still have parity symmetry!)
k = 1
T = Permutation(circshift(1:N, -1))
C_N = PermutationGroup([T^p for p in 0:(N-1)])
irrep_k_characters = [C_N_character(N, k, p) for p in 0:(N-1)]
irrep_k = Representation(C_N, irrep_k_characters)
# block of Hamiltonian without remaining symmetries
block = Spinhalf(N, Nup, irrep_k)
# find its eigenspectrum
Hmat = matrix(H, block)
eigenvalues = eigvals(Hermitian(Hmat))
# compute level statistics (taking only inner most half of spectrum)
N_levels = size(block)
s_start = trunc(Int, 0.25*N_levels)
s_stop = trunc(Int, 0.75*N_levels)
s_num = s_stop - s_start
s_arr = Vector{Float64}(undef, s_num)
s_arr_sum = 0.0
for i in 1:s_num
s_arr[i] = eigenvalues[s_start+i+1] - eigenvalues[s_start+i]
s_arr_sum += s_arr[i]
end
# normalize
return s_arr / (s_arr_sum / s_num)
end
function C_N_character(N::Int, k::Int, p::Int)
return exp( im * 2 * pi * p * k * 1.0 / N )
end
function plot_histograms(integ_stat::Vector{Float64}, noninteg_stat::Vector{Float64})
# plot histograms
smax = 3
Nbins = 20
bins = LinRange(0, smax, Nbins)
histogram(
[integ_stat noninteg_stat],
bins=bins,
normalize=:pdf,
fillalpha=0.3,
label=["integrable" "non-integrable"],
xlabel="s",
ylabel="P(s)"
)
# plot Wigner Dyson distribution
x_vals = LinRange(0, smax, 200)
WD_y_vals = WD_func.(x_vals)
plot!(x_vals, WD_y_vals, color=:red, linewidth=3, label="Wigner-Dyson")
# plot Poisson distribution
Pois_y_vals = Poisson_func.(x_vals)
plot!(x_vals, Pois_y_vals, color=:black, linewidth=3, label="Poisson")
end
function WD_func(s::Float64) :: Float64
return (pi*s/2) * exp(-pi*s^2/4)
end
function Poisson_func(s::Float64) :: Float64
return exp(-s)
end
main()