Skip to content

Tower of State \(J_1 - J_2\) Model in the Triangular Lattice

We perform a tower of states (TOS) analysis [1] of the \(J_1-J_2\) spin-\(\frac{1}{2}\) Heisenberg model on the triangular lattice [2]. This model consists of spin-\(\frac{1}{2}\) sites with nearest and next-nearest neighbor Heisenberg interactions,

\[ \mathcal{H} = J_1 \sum_{\langle i, j \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + J_2 \sum_{\langle\langle i, j \rangle\rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j. \]

The TOS analysis provides strong evidence for spontaneous symmetry breaking (SSB) in the thermodynamic limit, since the ground state of a finite system is completely symmetric. The \(J_1-J_2\) Heisenberg model on the triangular lattice can stabilize different types of order depending on the ratio \(J_2/J_1\), which break the continuous SO(3) spin rotation symmetry.

To perform the TOS analysis, we converged the lowest-lying eigenvalues using the Lanczos algorithm in each symmetry sector. We then determined the total spin quantum number, \(S_{\text{tot}}\), by inspecting, for each energy level, the number of degenerate eigenstates; thus, \(S_{\text{tot}}\) is given by the maximum \(S^z\). Finally, we plotted the energy spectra as a function of \(S_{\text{tot}}\left(S_{\text{tot}} + 1\right)\).

Image title

In the figure above, we show the energy spectra as a function of \(S_{\text{tot}}\left(S_{\text{tot}} + 1\right)\) for \(J_2=0\). In this case, the ground state exhibits a \(120^\circ\) Néel order. As described in [2], group representation theory can be used to predict the quantum numbers in the spontaneous symmetry breaking phases. In this cases, the multiplicities of irreducible representations in the Anderson tower of states can be obtained. This can then be confirmed by the exact diagonalization results the plotting script given above also plots the multiplicites for some sectors. We stress that the results presented are for \(N_{\text{spins}} = 18\) and, therefore, not all momenta in the first Brillouin zone can be resolved.

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <xdiag/all.hpp>

using namespace xdiag;

int main()
try
{

    std::cout<< hannes.row(0) <<std::endl;

    std::vector<double> energies;
    std::vector<std::string> IrrepList;
    std::vector<int> Szsector;
    int Nsites = 18;
    int numbeig = 6; // number of Eigenvalues to converge.

    std::vector<std::string> Irreps = {"Gamma.C2.A", "Gamma.C2.B", "K0.C1.A", "K1.C1.A", "M.C2.A", "M.C2.B", "X0.C1.A", "X1.C1.A", "X2.C1.A", "Z0.C1.A", "Z1.C1.A", "0.C1.A", "1.C1.A", "2.C1.A"};

    auto fl = xdiag::FileToml("triangular.18.10418.J1J2.sublattices.tsl.toml");

    xdiag::OpSum ops = read_opsum(fl, "Interactions");

    // For this ratio, we are in the 120 phase
    ops["J1"] = 1.0;
    ops["J2"] = 0.0;

    for (auto irrep : Irreps)
    {

        auto irrep2 = read_representation(fl, irrep, "Symmetries");

        for (int nup = 0; nup <= Nsites; nup++)
        {
            auto block = Spinhalf(Nsites, nup, irrep2);

            auto res = eigvals_lanczos(ops, block, numbeig);
            arma::vec eig0 = res.eigenvalues;

            for (unsigned i = 0; i < eig0.n_elem; i++)
            {
                energies.push_back(eig0[i]);
                IrrepList.push_back(irrep);
                Szsector.push_back(nup);
            }
        }
    }

    // Construct the filename
    std::string flstring = "energies_tower_of_states.triangular.Nsites." + std::to_string(Nsites) + ".outfile.txt";

    std::ofstream outfile(flstring);
    for (unsigned i = 0; i < energies.size(); i++)
    {
        outfile << energies[i] << "," << Szsector[i] << "," << IrrepList[i] << "\n";
    }
    outfile.close();
    return 0;
}
catch (Error e)
{
    error_trace(e);
}
using XDiag
using Printf
using HDF5

function SpectrumSz()
    energies = Vector{Float64}[] ## Collect the energies
    IrrepList = Vector{String}[] ## Collect the energies
    Nsites = 18
    numbeig = 6 # number of lanczos vectors to converge

    Irrep = []

    fl = FileToml("triangular.18.10418.J1J2.sublattices.tsl.toml") #TOML file with Shastry-Sutherland Interactions 
    ops = read_opsum(fl, "Interactions")
    # Define couplings
    ops["J1"] = 1.0
    ops["J2"] = 0.0 #  For this ratio of couplings we are in the 120 phase.

    Irreps =  ["Gamma.C2.A", "Gamma.C2.B", "K0.C1.A", "K1.C1.A", "M.C2.A", "M.C2.B", "X0.C1.A","X1.C1.A","X2.C1.A", "Z0.C1.A","Z1.C1.A","0.C1.A","1.C1.A","2.C1.A"]

    # Loop different Irreps
    for j in Irreps
        irrep = read_representation(fl, j)
        # Loop different total magnetization sector:
        for nup in 0:Nsites
            block = Spinhalf(Nsites, nup, irrep)
            r = eigvals_lanczos(ops, block, neigvals=numbeig)
            eig = r.eigenvalues
            for i in 1:length(eig)
                push!(energies, [nup, eig[i]])
                push!(IrrepList,[j])
            end
        end
    end

    filename = @sprintf("energies_tower_of_states.triangular.Nsites.%d.outfile.h5", Nsites)
    h5open(filename, "w") do file
        write(file, "energies", hcat(energies...))
        write(file, "irrep", hcat(IrrepList...))
    end
end

SpectrumSz()

Plotting Script

using HDF5, CairoMakie

# === Load Data ===
# Open the HDF5 file and read datasets "energies" and "irrep"
data18 = h5open("energies_tower_of_states.triangular.Nsites.18.outfile.h5", "r")
AllEnergies = read(data18["energies"])
Allirreps = read(data18["irrep"])[1,:]
close(data18)

# === Function Definitions ===

# Computes total spin values given energies and irreps.
function get_STotal(energies, irreps, Nspins)
    # In Julia the columns are 1-indexed; here column 2 corresponds to Python’s energies[:,1]
    energies2 = round.(energies[2, :], digits=8)
    E0 = unique(energies2)
    sort!(E0)
    Stot = similar(E0)
    Irreps_arr = Vector{Any}(undef, length(E0))

    for (i, e0) in enumerate(E0)
        mask = findall(x -> x == e0, energies2)
        # Column 1 of energies corresponds to Python’s energies[:,0]
        Sz = energies[1, mask] .- Nspins / 2
        vals = Sz .* (Sz .+ 1)
        max_val, arg = findmax(vals)
        Stot[i] =abs(max_val)
        # Get the corresponding irreps element.
        Irreps_arr[i] = irreps[mask][arg]
    end
    return Stot, E0, Irreps_arr
end

# Extracts lower energy levels for a specified irreducible representation.
function get_lower(Stotal, sortedEnergies, allenergies, IrrepList, IrreListAll, irr)
    target = irr[1]
    maskAll = findall(x -> x == target, IrreListAll)

    mask = findall(x -> x == target, IrrepList)

    energies2 = round.(allenergies[2, maskAll], digits=8)


    St = round.(Stotal, digits=0)
    # Consider only the entries corresponding to the target irreducible rep.
    St_mask = St[mask]

    St2 = sort(unique(St_mask))

    E2 = sortedEnergies[mask]

    Ef = zeros(length(St2), 2)

    for (i, s) in enumerate(St2)
        mask2 = findall(x -> x == s, St_mask)

        E_subset = E2[mask2]

        Ef[i, 1] = minimum(E_subset)

        multiplicity = findall(x -> x == Ef[i, 1], energies2)

        Ef[i, 2] = length(multiplicity)
    end
    return St2, Ef
end



function make_Plot()
    # --- Compute Quantities ---
    Nspins = 18
    Stot, SEtot, SortedIr = get_STotal(AllEnergies, Allirreps,Nspins)

    SGamma, EGamma = get_lower(Stot, SEtot, AllEnergies, SortedIr, Allirreps, ["Gamma.C2.A"])
    SGammaB, EGammaB = get_lower(Stot, SEtot, AllEnergies, SortedIr, Allirreps, ["Gamma.C2.B"])
    SGammaK, EGammaK = get_lower(Stot, SEtot, AllEnergies, SortedIr, Allirreps, ["K0.C1.A"])

    # === Plotting ===
    fig = Figure(ratio=1.618)
    ax = Axis(fig[1, 1],
        xlabel=L"S_{\text{total}}(S_{\text{ total}}+1)",
        ylabel=L"$(E - E_{\text{GS} })/J_1$" )

    xlims!(ax, -0.5, 12.5),
    ylims!(ax, -0.4, 5)
    # Plot the reference line: Stot vs. 0.265*Stot
    lines!(ax, Stot, 0.265 .* Stot, color=:black)

    Egs = minimum(SEtot)
    # Plot all energies shifted by the ground state energy.
    scatter!(ax, Stot, SEtot .- Egs, color=:black, markersize=4)

    maskA = [2, 4]  

    print(SGamma)

    scatter!(ax, SGamma[maskA], EGamma[maskA, 1] .- Egs,
        marker=:utriangle, markersize=10,
        label=L"$\Gamma.\mathrm{C2.A}$")
    @info "Multiplicity for Gamma.C2.A: $(EGamma[maskA, 2])"

    maskB = [1, 3, 4]  
    scatter!(ax, SGammaB[maskB], EGammaB[maskB, 1] .- Egs,
        marker=:utriangle, markersize=10,
        label=L"$\Gamma.\mathrm{C2.B}$")
    @info "Multiplicity for Gamma.C2.B: $(EGammaB[maskB, 2])"

    maskC = [2, 3, 4]  
    scatter!(ax, SGammaK[maskC], EGammaK[maskC, 1] .- Egs,
        marker=:star5, markersize=10,
        label=L"$K_0.\mathrm{C1.A}$")

    @info "Multiplicity for K0.C1.A: $(EGammaK[maskC, 2])"

    text!(ax, L"J_2=0", position=(10, 4.5), align=(:left, :center))


    axislegend(ax; framevisible=true, position=:rb, labelsize=15)
    display(fig)

    return nothing
end


make_Plot()

references

[1] P. W. Anderson, An Approximate Quantum Theory of the Antiferromagnetic Ground State, Phys. Rev. 86, 694 (1952)

[3] Alexander Wietek, Michael Schuler and Andreas M. Läuchli, Studying Continuous Symmetry Breaking using Energy Level Spectroscopy, arXiv:1704.08622 (2017).