Skip to content

Shastry Sutherland Specific Heat with TPQ

We use an ensemble of Thermal Pure Quantum (TPQ) states [1] to compute the total energy and specific heat as functions of temperature for the Shastry–Sutherland model.

The Shastry–Sutherland model is a paradigmatic example of a frustrated two-dimensional antiferromagnetic spin system. It is widely used as a faithful representation of materials such as the frustrated quantum magnet \(\text{SrCu}_2(\text{BO}_3)_2\). On a square lattice, the model describes spin \(-\frac{1}{2}\) magnetic moments interacting via Heisenberg antiferromagnetic couplings, as shown in following figure.

Image title

The Hamiltonian is given by

\[ \mathcal{H} = J \sum_{\langle i,j \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + J_D \sum_{\langle\langle i,j \rangle\rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j. \]

The expectation value of an observable \(\mathcal{O}\) in the canonical ensemble is

\[ \langle \mathcal{O} \rangle = \frac{\text{Tr}\left(e^{-\beta \mathcal{H}} \mathcal{O}\right)}{\mathcal{Z}}, \]

where \(\beta\) is the inverse temperature and \(\mathcal{Z} = \text{Tr}\left(e^{-\beta \mathcal{H}}\right)\). We approximate the trace stochastically using a set of random vectors \(\{r_\alpha\}\), leading to

$$ \langle \mathcal{O} \rangle \approx \sum_{\alpha} \frac{\langle \beta_\alpha | \mathcal{O} | \beta_\alpha \rangle}{\langle \beta_\alpha | \beta_\alpha \rangle}, \quad \text{with } |\beta_\alpha\rangle = e^{-\beta \mathcal{H}}|r_\alpha\rangle, $$ where $ |\beta_\alpha\rangle$ is a TPQ state.

We efficiently compute the TPQ state using the Lanczos basis [2], \(V\), constructed from \(|r_\alpha\rangle\). In this basis, the observable is approximated as

\[ \langle \beta_\alpha | \mathcal{O} | \beta_\alpha \rangle \approx e_1^T\, V\, e^{-\beta/2\, T}\, V^\dagger\, \mathcal{O}\, V\, e^{-\beta/2\, T}\, V^\dagger\, e_1, \]

where \(e_1^T = (1, 0, \dots, 0)\) and \(T = V^\dagger \mathcal{H} V\) is a tridiagonal matrix.

Thus, for each random state, the algorithm performs the following steps:

  1. Generate the Lanczos Basis: Obtain the elements of the tridiagonal matrix \(T\) from the state \(|r_\alpha\rangle\).

  2. Compute Observables: To obtain the specific heat, $$ C = \beta^2\left[\langle \mathcal{H}^2 \rangle - \langle \mathcal{H} \rangle^2\right], $$ we need to evaluate

\[ \langle \beta_\alpha | \mathcal{H} | \beta_\alpha \rangle \approx e_1^T\, V\, e^{-\beta/2\, T}\, T\, e^{-\beta/2\, T}\, V^\dagger\, e_1, \\[2exm] \langle \beta_\alpha | \mathcal{H}^2 | \beta_\alpha \rangle \approx e_1^T\, V\, e^{-\beta/2\, T}\, T^2\, e^{-\beta/2\, T}\, V^\dagger\, e_1. \]

This part could be done in the post-processing. The result is shown in the following figure, Image title The error bar was done using a Jackknife analysis.

#include <iostream>
#include <vector>
#include <string>
#include <xdiag/all.hpp>

const unsigned Nsites = 20; // Total number of sites in the Shastry-Sutherland model:
const unsigned Rtqp = 5;    // Number of random vectors to be used in the algorithm

auto fl = xdiag::FileToml("shastry_sutherland_L_5_W_4.toml"); // TOML file with the list of interactions
using namespace xdiag;

void Tqp_mag_sector(arma::mat &Obser, arma::vec &DBetas, xdiag::OpSum &H);

int main()
try
{
    // Read OpSum from file
    xdiag::OpSum ops = read_opsum(fl, "Interactions");

    // Defines exchange coupling strenght -- This ratio of couplings corresponds to the dimmer phase.
    ops["Jd"] = 1.0;
    ops["J"] = 0.630;

    // Linear Array with target temperatures
    arma::vec Temp = arma::linspace<arma::vec>(0.01, 0.35, 64);

    // Array to store the specific heat
    arma::mat Obser = arma::mat(Temp.n_elem, 3, arma::fill::zeros);

    Tqp_mag_sector(Obser, Temp, ops);

    auto save_fl = FileH5("shastry_sutherland_L_5_W_4.h5", "w!");
    save_fl["Temp"] = Temp;
    save_fl["Observable"] = Obser;

    return 0;
}
catch (Error e)
{
    error_trace(e);
}

void Tqp_mag_sector(arma::mat &Obser, arma::vec &Temp, xdiag::OpSum &H)
{
    auto block = Spinhalf(Nsites); // Create spin-1/2 block with conservation of Sz

    arma::vec eigs;
    arma::mat vecs;
    for (unsigned k = 0; k < Rtqp; k++) // #Perform the calculation for each random vector
    {
        auto res = eigvals_lanczos(H, block, 1, 1e-12, 150,1e-7,k); // Perform the Lanczos interation starting from a random vector;

        //This part can be done in the post-processing        
        arma::mat tmatrix = arma::diagmat(res.alphas);
        tmatrix += arma::diagmat(res.betas.head(res.betas.size() - 1), 1) + arma::diagmat(res.betas.head(res.betas.size() - 1), -1);

        arma::eig_sym(eigs, vecs, tmatrix); // get eigenvector of T

        for (unsigned k = 0; k < Temp.n_elem; k++)
        {
            arma::vec psi1 =(arma::exp(-(eigs-eigs(0)) / (2.0*Temp(k))) % arma::conj((vecs.row(0).t()))); // compute psi_1

            Obser(k, 0) += arma::dot(psi1, psi1); // get norm factor for the partition function

            Obser(k, 1) += arma::dot(psi1, eigs % psi1); // measure energy

            Obser(k, 2) += arma::dot(psi1,eigs % eigs% psi1); // measure energy square
        }
    }
}
using LinearAlgebra, LinearAlgebra.LAPACK
using XDiag
using HDF5
using Printf
const Nsites = 20 # Total number of sites in the Shastry-Sutherland model:
const Rtqp = 2 # Number of random vectors to be used in the algorithm

function Tqp_mag_sector(Obser::Matrix{Float64}, Temp::LinRange{Float64,Int64}, H::OpSum)

    block = Spinhalf(Nsites) #Create spin-1/2 block with conservation of Sz

    for k in 1:Rtqp #Perform the calculation for each random vector
        res = eigvals_lanczos(H, block, neigvals=1, precision=1e-12, max_iterations=150, deflation_tol=1e-7, random_seed=k) # Perform the Lanczos interation starting from a random vector;

        d = length(res.alphas)
        vecs = Matrix{Float64}(I, d, d)
        #This part can be done in the post-processing
        (eigs, vecs) = LAPACK.stev!('V', res.alphas, res.betas)

        for k in 1:length(Temp)
            psi1 = exp.(-(eigs .- eigs[1]) ./ (2.0 .* Temp[k])) .* conj(vecs[1, :]) # compute psi_1

            Obser[k, 1] += dot(psi1, psi1)# get norm factor for the partition function

            Obser[k, 2] += dot(psi1, eigs .* psi1) # measure energy

            Obser[k, 3] += dot(psi1, eigs .* (eigs .* psi1))# measure energy square
        end
    end
end

function main()


    #Reads the file with the interactions
    fl = FileToml("shastry_sutherland_L_5_W_4.toml")
    ops = read_opsum(fl, "Interactions")
    #Defines exchange coupling strenght -- This ratio of couplings corresponds to the dimmer phase.
    ops["Jd"] = 1.0
    ops["J"] = 0.630

    # Linear Array with target temperatures
    Temp = LinRange(0.01, 0.35, 64)

    # Array to store the average value of the observable 
    Obser = zeros(Float64, (length(Temp), 3))

    Tqp_mag_sector(Obser, Temp, ops)

    filename = @sprintf("shastry_sutherland_L_5_W_4.h5")
    h5open(filename, "w") do file
        write(file, "Temp", collect(Temp))
        write(file, "Observable", Obser)
    end
end

main()

The interactions terms for the Shastry Sutherland model with \(L=5\) and \(W=4\) sites is given in the following TOML file:

# Interaction Shastry Sutherland with L=5 and W=4
Interactions = [["J", "SdotS", 0, 4], 
["J", "SdotS", 0, 16], 
["J", "SdotS", 0, 1], 
["J", "SdotS", 0, 3], 
["J", "SdotS", 1, 5], 
["J", "SdotS", 1, 17], 
["J", "SdotS", 1, 2], 
["J", "SdotS", 2, 6], 
["J", "SdotS", 2, 18], 
["J", "SdotS", 2, 3], 
["J", "SdotS", 3, 7], 
["J", "SdotS", 3, 19], 
["J", "SdotS", 4, 8], 
["J", "SdotS", 4, 5], 
["J", "SdotS", 4, 7], 
["J", "SdotS", 5, 9], 
["J", "SdotS", 5, 6], 
["J", "SdotS", 6, 10],
["J", "SdotS", 6, 7], 
["J", "SdotS", 7, 11], 
["J", "SdotS", 8, 12], 
["J", "SdotS", 8, 9], 
["J", "SdotS", 8, 11], 
["J", "SdotS", 9, 13], 
["J", "SdotS", 9, 10], 
["J", "SdotS", 10, 14],
["J", "SdotS", 10, 11], 
["J", "SdotS", 11, 15], 
["J", "SdotS", 12, 16], 
["J", "SdotS", 12, 13], 
["J", "SdotS", 12, 15], 
["J", "SdotS", 13, 17], 
["J", "SdotS", 13, 14], 
["J", "SdotS", 14, 18], 
["J", "SdotS", 14, 15], 
["J", "SdotS", 15, 19], 
["J", "SdotS", 16, 17], 
["J", "SdotS", 16, 19], 
["J", "SdotS", 17, 18], 
["J", "SdotS", 18, 19], 
["Jd", "SdotS", 0, 5], 
["Jd", "SdotS", 6, 9], 
["Jd", "SdotS", 2, 7], 
["Jd", "SdotS", 4, 11], 
["Jd", "SdotS", 8, 13], 
["Jd", "SdotS", 14, 17], 
["Jd", "SdotS", 10, 15], 
["Jd", "SdotS", 12, 19], 
["Jd", "SdotS", 1, 16], 
["Jd", "SdotS", 3, 18]]
N = [20]

references

[1] S. Sugiura and A. Shimizu, Thermal Pure Quantum States at Finite Temperature, Phys. Rev. Lett. 108, 240401 (2012).

[2] Wietek, Alexander, Corboz, Philippe, Wessel, Stefan, Normand, B., Mila, Fr\'ed\'eric and Honecker, Andreas Thermodynamic properties of the Shastry-Sutherland model throughout the dimer-product phase, PhysRevResearch.103, 3038 (2019).